
<u>if </u><u>we </u><u>ever </u><u>face </u><u>a </u><u>number </u><u>written </u><u>in </u><u>the </u><u>form </u><u>of </u>
<u>where </u><u>x </u><u>denotes </u><u>the </u><u>base </u><u>and </u><u>n </u><u>denotes </u><u>the </u><u>exponent</u><u> </u><u>or </u><u>power </u><u>,</u><u> </u><u>we </u><u>can </u><u>expand </u><u>it </u><u>in </u><u>the </u><u>following</u><u> </u><u>way </u><u>-</u>

therefore ,

option ( B )
hope helpful -,-
You have to use the keywords that register to the problem
y = -3(x<span> - 2)^2 + 1 </span>x<span>-coordinate of vertex: </span>x<span> = -b/(2a) = -12/-6 = 2 y-coordintae of vertex: y(2) = -12 + 24 - 11 = 1 </span>Vertex form: y = -3(x<span> - 2)^2 + 1 Check. Develop y to get back to standard form: y = -3(</span>x^2 - 4x + 4) + 1 = -3x<span>^2 + </span>12x<span> - </span>11<span>. </span>
Answer:
Check the explanation
Step-by-step explanation:
Kindly check the attached image below for the step by step explanation to the question above.
Answer:
z is equal to 0,4, and -3
Step-by-step explanation: