Domain means the values of independent variable(input) which will give defined output to the function.
Given:
The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function

Solution:
To get defined output, the height h(t) need to be greater than or equal to zero. We need to set up an inequality and solve it to find the domain values.
![To \; find \; domain:\\\\h(t) \geq0\\\\-16t^2+96t \geq 0\\Factoring \; -16t \; in \; the \; left \; side \; of \; the \; inequality\\\\-16t(t-6) \geq 0\\Step \; 1: Find \; Boundary \; Points \; by \; setting \; up \; above \; inequality \; to \; zero.\\\\t(t-6)=0\\Use \; zero \; factor \; property \; to \; solve\\\\t=0 \; (or) \; t = 6\\\\Step \; 2: \; List \; the \; possible \; solution \; interval \; using \; boundary \; points\\(- \infty,0], \; [0, 6], \& [6, \infty)](https://tex.z-dn.net/?f=%20To%20%5C%3B%20find%20%5C%3B%20domain%3A%5C%5C%5C%5Ch%28t%29%20%5Cgeq0%5C%5C%5C%5C-16t%5E2%2B96t%20%5Cgeq%20%200%5C%5CFactoring%20%5C%3B%20-16t%20%5C%3B%20in%20%5C%3B%20the%20%5C%3B%20left%20%5C%3B%20side%20%5C%3B%20of%20%5C%3B%20the%20%5C%3B%20inequality%5C%5C%5C%5C-16t%28t-6%29%20%5Cgeq%20%200%5C%5CStep%20%5C%3B%201%3A%20Find%20%5C%3B%20Boundary%20%5C%3B%20Points%20%5C%3B%20by%20%5C%3B%20setting%20%5C%3B%20up%20%5C%3B%20above%20%5C%3B%20inequality%20%5C%3B%20to%20%5C%3B%20zero.%5C%5C%5C%5Ct%28t-6%29%3D0%5C%5CUse%20%5C%3B%20zero%20%5C%3B%20factor%20%5C%3B%20property%20%5C%3B%20to%20%5C%3B%20solve%5C%5C%5C%5Ct%3D0%20%5C%3B%20%28or%29%20%5C%3B%20t%20%3D%206%5C%5C%5C%5CStep%20%5C%3B%202%3A%20%5C%3B%20List%20%5C%3B%20the%20%5C%3B%20possible%20%20%5C%3B%20solution%20%5C%3B%20interval%20%5C%3B%20using%20%5C%3B%20boundary%20%5C%3B%20points%5C%5C%28-%20%5Cinfty%2C0%5D%2C%20%5C%3B%20%5B0%2C%206%5D%2C%20%5C%26%20%5B6%2C%20%5Cinfty%29%20)
![Step \; 3:Pick \; test \; point \; from \; each \; interval \; to \; check \; whether \\\; makes \; the \; inequality \; TRUE \; or \; FALSE\\\\When \; t = -1\\-16(-1)(-1-6) \geq 0\\-112 \geq 0 \; FALSE\\(-\infty, 0] \; is \; not \; solution\\Also \; Logically \; time \; t \; cannot \; be \; negative\\\\When \; t = 1\\-16(1)(1-6) \geq 0\\80 \geq 0 \; TRUE\\ \; [0, 6] \; is \; a \; solution\\\\When \; t = 7\\-16(7)(7-6) \geq 0\\-112 \geq 0 \; FALSE\\ \; [6, -\infty) \; is \; not \; solution](https://tex.z-dn.net/?f=%20Step%20%5C%3B%203%3APick%20%5C%3B%20test%20%5C%3B%20point%20%5C%3B%20from%20%5C%3B%20each%20%5C%3B%20interval%20%5C%3B%20to%20%5C%3B%20check%20%5C%3B%20whether%20%5C%5C%5C%3B%20makes%20%5C%3B%20the%20%5C%3B%20inequality%20%5C%3B%20TRUE%20%5C%3B%20or%20%5C%3B%20FALSE%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%20-1%5C%5C-16%28-1%29%28-1-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%28-%5Cinfty%2C%200%5D%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%5C%5CAlso%20%5C%3B%20Logically%20%5C%3B%20time%20%5C%3B%20t%20%5C%3B%20cannot%20%5C%3B%20be%20%5C%3B%20negative%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%201%5C%5C-16%281%29%281-6%29%20%5Cgeq%20%200%5C%5C80%20%5Cgeq%20%200%20%5C%3B%20TRUE%5C%5C%20%5C%3B%20%5B0%2C%206%5D%20%5C%3B%20is%20%5C%3B%20a%20%5C%3B%20solution%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%207%5C%5C-16%287%29%287-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%20%5C%3B%20%5B6%2C%20-%5Cinfty%29%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%20)
Conclusion:
The domain of the function is the time in between 0 to 6 seconds

The height will be positive in the above interval.
So he worked 30.5 hours, he just didn't write some of the hours down. To find the hours he didn't write down, you subtract 8+

+

from 30.5, which equals
I need the below to answer
Answer:
Option A
Step-by-step explanation:
Positive correlation describes a relationship between two variables where both variables move in the same direction. In this case, the response variable will increase as the explanatory variable increases.
Answer:

area: 136 cm
perimeter: 48 cm
Step-by-step explanation:
For the first one just subtract

for the second one you just have to break it into smaller, more digestible pieces (work below)