We can create a equation to find out.
since we are finding a number where when multiplied by 1.25(this is the decimal form of the percentage) gives us 25, we know that the number we are finding is less than 25. here is the equation.
1.25(x)=25
divide both sides by 1.25 to get "x" alone.
x= 20
Answer:
The correct answer is B.
Step-by-step explanation:
In order to find this, calculate out the discriminant for each of the following equations. If the discriminant is a perfect square, then it can be factored.
Discriminant = b^2 - 4ac
The only of the equations that does not yield a perfect square is B. The work for it is done below for you.
Discriminant = b^2 - 4ac
Discriminant = 7^2 - 4(2)(-5)
Discriminant = 49 + 40
Discriminant = 89
Since 89 is not a perfect square, we cannot factor this.
Answer:
45
Step-by-step explanation:
A whole circle is 360 so if you divided that by 8 you get 45
Added all that up and you get 680$
hope this helps
Answer:
c) Is not a property (hence (d) is not either)
Step-by-step explanation:
Remember that the chi square distribution with k degrees of freedom has this formula

Where N₁ , N₂m ....
are independent random variables with standard normal distribution. Since it is a sum of squares, then the chi square distribution cant take negative values, thus (c) is not true as property. Therefore, (d) cant be true either.
Since the chi square is a sum of squares of a symmetrical random variable, it is skewed to the right (values with big absolute value, either positive or negative, will represent a big weight for the graph that is not compensated with values near 0). This shows that (a) is true
The more degrees of freedom the chi square has, the less skewed to the right it is, up to the point of being almost symmetrical for high values of k. In fact, the Central Limit Theorem states that a chi sqare with n degrees of freedom, with n big, will have a distribution approximate to a Normal distribution, therefore, it is not very skewed for high values of n. As a conclusion, the shape of the distribution changes when the degrees of freedom increase, because the distribution is more symmetrical the higher the degrees of freedom are. Thus, (b) is true.