Answer:
When the ball goes to first base it will be 4.23 m high.
Explanation:
Horizontal velocity = 30 cos17.3 = 28.64 m/s
Horizontal displacement = 40.5 m
Time
Time to reach the goal posts 40.5 m away = 1.41 seconds
Vertical velocity = 30 sin17.3 = 8.92 m/s
Time to reach the goal posts 40.5 m away = 1.41 seconds
Acceleration = -9.81m/s²
Substituting in s = ut + 0.5at²
s = 8.92 x 1.41 - 0.5 x 9.81 x 1.41²= 2.83 m
Height of throw = 1.4 m
Height traveled by ball = 2.83 m
Total height = 2.83 + 1.4 = 4.23 m
When the ball goes to first base it will be 4.23 m high.
B) law of conservation of momentum
It states that the total momentum of a system before impact is the same as the total momentum of the system after impact.
In this case total momentum before impact:
10kg*5m/s + 5kg * 0m/s = 50 kg m/s
After Impact:
10kg*0m/s + 5kg*10m/s = 50 kg m/s
You can see the momentum before and after impact is same as 50 kg m/s
Of course we assumed that the first cart stopped after the impact, and there are no energy losses.
Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.