1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alisha [4.7K]
3 years ago
11

What does the geology of the two continents indicate about past events in Earth history?

Physics
1 answer:
Nikolay [14]3 years ago
6 0

Answer:

Explanation:

Rocks tell us a great deal about the Earth's history. Igneous rocks tell of past volcanic episodes and can also be used to age-date certain periods in the past. Sedimentary rocks often record past depositional environments (e.g deep ocean, shallow shelf, fluvial) and usually contain the most fossils from past ages.

You might be interested in
What causes the pressure that allows diamonds to form in the mantle
LuckyWell [14K]
It’s C I just took it
5 0
4 years ago
Read 2 more answers
Why do waves in a tank are 10 cm long if they pass a point at a rate of 3.75 waves per second what is the speed in m/s?
AURORKA [14]

Answer: 0.0267m/s

Explanation: Wave speed in m/s

Speed = Distance/Time

Substitute the given values into the formula

Speed = 0.1/3.75

Speed = 0.0267m/s

7 0
3 years ago
A very long solid insulating cylinder has radius R = 0.1 m and uniform charge density rho0= 10-3 C/m3. Find the electric field a
Galina-37 [17]

Answer:

E   = (0.56 \times 10^8 ) r   \   \ N/c

Explanation:

Given that:

\rho_o = (10^{-3} ) \ c/m^3

R = (0.1) m

To find  the electric field for r < R by using Gauss Law

{\oint}E^{\to}* da^{\to} = \dfrac{Q_{enclosed}}{\varepsilon_o} --- (1)

For r < R

Q_{enclosed}=(\rho) ( \pi r^2 ) l

E*(2 \pi rl)= \dfrac{\rho ( \pi r ^2 l)}{\varepsilon_o}

E= \dfrac{\rho ( r)}{2 \varepsilon_o}

where;

\varepsilon_o = 8.85 \times 10^{-12}

E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}

E= \dfrac{10^{-3} ( r)}{2 (8.85 \times 10^{-12})}

E   = (0.56 \times 10^8 ) r   \   \ N/c

4 0
3 years ago
The ball is moving at a constant speed of 0.5 m/s for 2.3 seconds how far does it go?
yarga [219]

Distance = (speed) x (time)

Distance = (0.5 m/s) x (2.3 s)

Distance = (0.5 x 2.3) m

Distance = 1.15 meters

7 0
4 years ago
5/6 When switched on, the grinding machine accelerates from rest to its operating speed of 3450 rev/min in 6 seconds. When switc
ludmilkaskok [199]

Answer:

Δθ₁ =  172.5 rev

Δθ₁h =  43.1 rev

Δθ₂ =   920 rev

Δθ₂h = 690 rev

Explanation:

  • Assuming uniform angular acceleration, we can use the following kinematic equation in order to find the total angle rotated during the acceleration process, from rest to its operating speed:

       \Delta \theta = \frac{1}{2} *\alpha *(\Delta t)^{2}  (1)  

  • Now, we need first to find the value of  the angular acceleration, that we can get from the following expression:

       \omega_{f1}  = \omega_{o} + \alpha * \Delta t  (2)

  • Since the machine starts from rest, ω₀ = 0.
  • We know the value of ωf₁ (the operating speed) in rev/min.
  • Due to the time is expressed in seconds, it is suitable to convert rev/min to rev/sec, as follows:

       3450 \frac{rev}{min} * \frac{1 min}{60s} = 57.5 rev/sec (3)

  • Replacing by the givens in (2):

       57.5 rev/sec = 0 + \alpha * 6 s  (4)

  • Solving for α:

       \alpha = \frac{\omega_{f1}}{\Delta t} = \frac{57.5 rev/sec}{6 sec} = 9.6 rev/sec2 (5)

  • Replacing (5) and Δt in (1), we get:

       \Delta \theta_{1} = \frac{1}{2} *\alpha *(\Delta t)^{2} = \frac{1}{2} * 6.9 rev/sec2* 36 sec2 = 172.5 rev  (6)

  • in order to get the number of revolutions during the first half of this period, we need just to replace Δt in (6) by Δt/2, as follows:

       \Delta \theta_{1h} = \frac{1}{2} *\alpha *(\Delta t/2)^{2} = \frac{1}{2} * 6.9 rev/sec2* 9 sec2 = 43.2 rev  (7)

  • In order to get the number of revolutions rotated during the deceleration period, assuming constant deceleration, we can use the following kinematic equation:

       \Delta \theta = \omega_{o} * \Delta t + \frac{1}{2} *\alpha *(\Delta t)^{2}  (8)

  • First of all, we need to find the value of the angular acceleration during the second period.
  • We can use again (2) replacing by the givens:
  • ωf =0 (the machine finally comes to an stop)
  • ω₀ = ωf₁ = 57.5 rev/sec
  • Δt = 32 s

       0 = 57.5 rev/sec + \alpha * 32 s  (9)

  • Solving for α in (9), we get:

       \alpha_{2}  =- \frac{\omega_{f1}}{\Delta t} = \frac{-57.5 rev/sec}{32 sec} = -1.8 rev/sec2 (10)

  • Now, we can replace the values of ω₀, Δt and α₂ in (8), as follows:

        \Delta \theta_{2}  = (57.5 rev/sec*32) s -\frac{1}{2} * 1.8 rev/sec2\alpha *(32s)^{2} = 920 rev (11)

  • In order to get finally the number of revolutions rotated during the first half of the second period, we need just to replace 32 s by 16 s, as follows:
  • \Delta \theta_{2h}  = (57.5 rev/sec*16 s) -\frac{1}{2} * 1.8 rev/sec2\alpha *(16s)^{2} = 690 rev (12)
7 0
3 years ago
Other questions:
  • An increase in temperature will ___________ the speed of a sound wave?
    10·2 answers
  • A runner starts from a rest and speeds up with a constant acceleration . if she has gone a distance of 30 m at the point when sh
    15·2 answers
  • Is this answer correct?
    8·1 answer
  • What is momentum in physics​
    13·2 answers
  • The number of mushrooms needed by a pizza restaurant is given by the
    12·1 answer
  • How much work is done by a force of 20N while moving an object through distance 10 m of the force ​
    6·1 answer
  • Your car gets a flat! You go from 90 kilometers per hour to a stop in 6 seconds. What is your rate of deceleration? (it's negati
    11·1 answer
  • If Emily tries to jump over a narrow river at the speed of 6 m/s
    13·1 answer
  • An asteroid orbits the Sun every 176 years. What is the asteroids average distance from the Sun? P ^ 2 = a ^ 3 where p = period
    7·1 answer
  • If you travel 450 meters in 40 seconds, what is your average speed in meters per
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!