Answer:
The rate at which the container is losing water is 0.0006418 g/s.
Explanation:
- Under the assumption that the can is a closed system, the conservation law applied to the system would be:
, where
is all energy entering the system,
is the total energy leaving the system and,
is the change of energy of the system. - As the purpose is to kept the beverage can at constant temperature, the change of energy (
) would be 0. - The energy that goes into the system, is the heat transfer by radiation from the environment to the top and side surfaces of the can. This kind of transfer is described by:
where
is the emissivity of the surface,
known as the Stefan–Boltzmann constant,
is the total area of the exposed surface,
is the temperature of the surface in Kelvin,
is the environment temperature in Kelvin. - For the can the surface area would be ta sum of the top and the sides. The area of the top would be
, the area of the sides would be
. Then the total area would be 
- Then the radiation heat transferred to the can would be
. - The can would lost heat evaporating water, in this case would be
, where
is the rate of mass of water evaporated and,
is the heat of vaporization of the water (
). - Then in the conservation balance:
, it would be
. - Recall that
, then solving for
:
The answer for that would be C
Acceleration of the both masses tied together= 6m/s²
Explanation:
The force is given by F= ma
so 5= m1 (8)
m1=0.625 Kg
for m2
5=m2 (24)
m2=0.208 kg
now total mass= m1+m2=0.625+0.208
Total mass=M=0.833 Kg
now F= ma
5= 0.833 (a)
a= 5/0.833
a=6m/s²
Answer:
3,200 ounces
Explanation:
1 pound (lb) is equal to 16 ounces (oz):
i.e 1 lb = 16 oz
Given:
200 pounds
To find:
2,000 pounds as ounces.
Steps:
200 (mass) * 16 = 3,200 ounces.
Thank you!
- EE
The sound wave will have traveled 2565 m farther in water than in air.
Answer:
Explanation:
It is known that distance covered by any object is directly proportional to the velocity of the object and the time taken to cover that distance.
Distance = Velocity × Time.
So if time is kept constant, then the distance covered by a wave can vary depending on the velocity of the wave.
As we can see in the present case, the velocity of sound wave in air is 343 m/s. So in 2.25 s, the sound wave will be able to cover the distance as shown below.
Distance = 343 × 2.25 =771.75 m
And for the sound wave travelling in fresh water, the velocity is given as 1483 m/s. So in a time interval of 2.25 s, the distance can be determined as the product of velocity and time.
Distance = 1483×2.25=3337 m.
Since, the velocity of sound wave travelling in fresh water is greater than the sound wave travelling in air, the distance traveled by sound wave in fresh water will be greater.
Difference in distance covered in water and air = 3337-772 m = 2565 m
So the sound wave will have traveled 2565 m farther in water than in air.