Burning of gases is one the example of chemical change
Answer:
Magnitude of the net force on q₁-
Fn₁=1403 N
Magnitude of the net force on q₂+
Fn₂= 810 N
Magnitude of the net force on q₃+
Fn₃= 810 N
Explanation:
Look at the attached graphic:
The charges of the same sign exert forces of repulsion and the charges of opposite sign exert forces of attraction.
Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:
F= (k*q*q)/(d)²
F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N
Magnitude of the net force on q₁-
Fn₁x= 0
Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N
Fn₁=1403 N
Magnitude of the net force on q₃+
Fn₃x= 810- 810 cos 60° = 405 N
Fn₃y= 810*sin 60° = 701.5 N

Fn₃ = 810 N
Magnitude of the net force on q₂+
Fn₂ = Fn₃ = 810 N
It increases
Explanation:
A circuit's resistance increases as more resistors are added to it in series.
Series connection of circuit provides an additive increase in the resistance offered by the overall circuit.
A resistor is a device in a circuit that impedes the flow of electric current. It simply uses electric current.
Examples are bulbs, radio, television.
The more of these devices connected one to another in series, the more the resistance increases.
learn more;
Voltage brainly.com/question/6949231
#learnwithBrainly
Answer:
beam of light converges to a point A. A lens is placed in the path of the convergent beam 12 cm from P.
To find the point at which the beam converge if the lens is (a) a convex lens of focal length 20 cm, (b) a concave lens of focal length 16 cm
Solution:
As per the given criteria,
the the object is virtual and the image is real (as the lens is placed in the path of the convergent beam)
(a) lens is a convex lens with
focal length, f=20cm
object distance, u=12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
20
1
+
12
1
⟹
v
1
=
60
3+5
⟹v=7.5cm
Hence the image formed is real, at 7.5cm from the lens on its right side.
(b) lens is a concave lens with
focal length, f=−16cm
object distance, 12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
−16
1
+
12
1
⟹
v
1
=
48
−3+4
⟹v=48m
Hence the image formed is real, at 48 cm from the lens on the right side.