1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
3 years ago
5

You have a remote-controlled car that has been programmed to have velocity v⃗ =(−3ti^+2t2j^)m/s, where t is in s. At t = 0 s, th

e car is at r⃗ 0=(3.0i^+2.0j^)mWhat is the x component of the car's position vector at 10 s?What is the y component of the car's position vector at 10 s?What is the x component of the car's acceleration vector at 10 s?What is the y component of the car's acceleration vector at 10 s?
Physics
1 answer:
DiKsa [7]3 years ago
5 0

Answer:

The y-component of the car's position vector is 670m/s.

The x-component of the acceleration vector is -3, and the y-component is 40.

Explanation:

The displacement vector of the car with velocity

\boldsymbol{v}= (-3t\boldsymbol{i}+2t^2\boldsymbol{j})m/s

is the integral of the velocity.

Integrating \boldsymbol{v} we get the displacement vector \boldsymbol{d}:

\boldsymbol{d}=(-\dfrac{3}{2}t^2\boldsymbol{i}+\dfrac{2}{3}t^3\boldsymbol{j}  )

Now if the initial position if the car is

\boldsymbol{r}= (3.0\boldsymbol{i}+2.0\boldsymbol{j})

then the displacement of the car at time t is

\boldsymbol{d(t)}= \boldsymbol{r+d}

\boxed{\boldsymbol{d(t)}=(-\dfrac{3}{2}t^2+3.0\boldsymbol{i}+\dfrac{2}{3}t^3+2.0\boldsymbol{j}  )}

Now at t=10s, we have

\boxed{\boldsymbol{d(t)}=(-147\boldsymbol{i}+670\boldsymbol{j}  )}m

The y-component of the car's position vector is 670m/s.

The acceleration vector is the derivative of the velocity vector:

\boldsymbol{a(t)}=\dfrac{d\boldsymbol{v(t)}}{dt} =(-3\boldsymbol{i}+4t\boldsymbol{j})

and at t=10s it is

\boldsymbol{a(t)}=(-3\boldsymbol{i}+40\boldsymbol{j})m/s^2

The x-component of the acceleration vector is -3, and the y-component is 40.

You might be interested in
How are sea cliffs formed
7nadin3 [17]
They are formed from erosion and weathering.
3 0
3 years ago
A car travels 40 miles in 30 minutes.
lukranit [14]

Answer:

(a)Average velocity ,v =128.74 Km/hr

(b)Kinetic Energy , K=958546.875 Joule

(c)Distance, s=268.8m

(d)Acceleration, a= - 2.38 m/s^2

<u>Explanation</u>:

<u>Given</u>:

Distance travelled = 40 miles

Time taken = 30 minutes.

(A) The average velocity in kilometres/hour

Converting 40 miles into km ,

we know that,

1 mile = 1.60934

40 miles =  40 x 1.60934

so 40 miles  =  64.3738 Km

similarly converting 30 minutes into hours

1 minute = \frac{1}{60}hours

30 minute = \frac{30}{60}hours

30 minute = \frac{1}{2}hours

Now

Average velocity = \frac{Speed}{time}

Substituting Values,

Average velocity = \frac{64.3738}{\frac[1}{2}}

Average velocity = 64.3738 \times 2

Average velocity =128.74 Km/hr

(B) If the car weighs 1.5 tons, what is its If the car weighs 1.5 tons, what is its kinetic energy in joules (Note: you will need to convert your velocity to m/s)? in joules (Note: you will need to convert your velocity to m/s)?

Converting 1.5 tons into kg we get

1 ton = 1000 kg

so 1.5 ton =1500 kg

converting  velocity to m/s

128.74  \times \frac{5}{18}

=>35.75 m/s----------------------------------------------------------(1)

kinetic energy  K= \frac{1}{2}mv^2

Substituting the values,

K= \frac{1}{2}1500(35.75)^2

K= \frac{1}{2}1500(1278.06)

K= \frac{1500 \times (1278.06)}{2}

K= \frac{1917093.75}{2}

K=958546.875 Joule---------------------------------------------(2)

(c)When the driver applies the brake, it takes 15 seconds to stop. How far does the car travel (in meters) while stopping

Lets use Distance formula,

S= ut+\frac{1}{2}at^2

Substituting the known values,

s= ut+\frac{1}{2}at^2

s= (37.75)(15)+\frac{1}{2}a(15)^2

s=566.25+\frac{1}{2}a(225)

s=566.25+\frac{(225a)}{2}-------------------------------------(3)

(D) What is the average acceleration of the car (in m/s2) during braking?

Using the formula

v=u +at

re arranging the formula we get,

a = \frac{v - u}{t}

Substituting the values

a = \frac{0 - 35.75}{15}

a = \frac{- 35.75}{15}

a= - 2.38 m/s^2----------------------------------------(4)

Now substituting 4 in 3 we get

s=566.25+\frac{(225( - 2.38)}{2}

s=566.25+\frac{-535.5}{2}

s=536.25-267.75

s=268.8m--------------------------------------------------------------(5)

4 0
3 years ago
a teacher pushed a 10kg desk across a floor for a distance of 5m. she exerted a horizontal force of 20n. how much work was done?
serious [3.7K]
Work Done = Force x distance
Since she exerted a horizontal force of 20N over a distance of 5m, the work done is 20N x 5m which is equals to 100 joules
7 0
4 years ago
What are two ways an engineer can build a car in order for it to accelerate faster
Ket [755]

Explanation:

Take F=ma

a = F/m

For a higher, F higher or m lower

Means higher horse power for engine or lower mass for the car

4 0
2 years ago
Help pls i need this right now
pantera1 [17]

Answer:

The x-component of F_{3} is 56.148 newtons.

Explanation:

From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:

\vec F_{1} + \vec F_{2} + \vec F_{3} = \vec O (1)

Where:

\vec F_{1}, \vec F_{2}, \vec F_{3} - External forces exerted on the ring, measured in newtons.

\vec O - Vector zero, measured in newtons.

If we know that \vec F_{1} = (70.711,70.711)\,[N], \vec F_{2} = (-126.859, 46.173)\,[N], F_{3} = (F_{3,x},F_{3,y}) and \vec O = (0,0)\,[N], then we construct the following system of linear equations:

\Sigma F_{x} = 70.711\,N - 126.859\,N +F_{3,x} = 0\,N (2)

\Sigma F_{y} = 70.711\,N + 46.173\,N+F_{3,y} = 0\,N (3)

The solution of this system is:

F_{3,x} = 56.148\,N, F_{3,y} = -116.884\,N

The x-component of F_{3} is 56.148 newtons.

5 0
3 years ago
Other questions:
  • When dr. hewitt drops a book and a crumpled piece of paper together from the same height, which one hits the ground first?
    9·1 answer
  • The risk of _______ injury increases with the total amount of physical activity. A. cardiovascular B. musculoskeletal C. cogniti
    9·1 answer
  • What do you measure with a spring scale?
    11·1 answer
  • Which unit is equivalent to j/s
    15·1 answer
  • A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measu
    7·1 answer
  • Unlike other states of matter, what expand to fill their containers
    13·2 answers
  • A child bounces a 52 g superball on the sidewalk. The velocity change of the superball is from 20 m/s downward to 14 m/s upward.
    8·2 answers
  • A 0.74 mF capacitor is connected to a standard outlet (rms voltage 82 V, frequency 49 Hz ). Determine the magnitude of the curre
    11·1 answer
  • What is meant by the ""total magnification"" of a microscope? How do you calculate it?
    6·1 answer
  • A fairgrounds ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!