Answer:
The answer to the question above is explained below
Explanation:
The reaction quotient, Q, is a measure of the relative amounts of reactants and products during a chemical reaction as it can be used to determine in which direction a reaction will proceed at a given point in time. Equilibrium constant is the numerical value of reaction quotient at the end of the reaction, when equilibrium is reached.
If Q = K then the system is already at equilibrium. If Q < Keq, the reaction will move toward the products to reach equilibrium. If Q > Keq, the reaction will move toward the reactants in order to reach equilibrium. Therefore, by comparing Q and K, we can determine the direction of a reaction.
Where Q= reaction quotient and Keq= equilibrium constant for the reaction.
The larger the equilibrium constant, the further the equilibrium lies toward the products. Reaction quotient is a quantity that changes as a reaction system approaches equilibrium.
We can determine the equilibrium constant based on equilibrium concentrations. K is the constant of a certain reaction when it is in equilibrium. Equilibrium occurs when there is a constant ratio between the concentration of the reactants and the products.
Answer:
a.) L = 2.64 kgm^2/s
b.) V = 4.4 m/s
Explanation: Jessica stretches her arms out 0.60 m from the center of her body. This will be considered as radius.
So,
Radius r = 0.6 m
Mass M = 2 kg
Velocity V = 1.1 m/s
Angular momentum L can be expressed as;
L = MVr
Substitute all the parameters into the formula
L = 2 × 1.1 × 0.6 = 1.32kgm^2s^-1
the combined angular momentum of the masses will be 2 × 1.32 = 2.64 kgm^2s-1
b. If she pulls her arms into 0.15 m,
New radius = 0.15 m
Using the same formula again
L = 2( MVr)
2.64 = 2( 2 × V × 0.15 )
1.32 = 0.3 V
V = 1.32/0.3
V = 4.4 m/s
Her new linear speed will be 4.4 m/s
The difference in frequency of the two signals is
.
The given parameters;
- <em>frequency of the 13 C signal = 201.16 MHz</em>
The energy of the 13 C signal located at 20 ppm is calculated as follows;

The energy of the 13 C signal located at 179 ppm is calculated as follows;

The difference in frequency of the two signals is calculated as follows;

Thus, the difference in frequency of the two signals is
.
Learn more here:brainly.com/question/14016376
Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
I have no idea what that is, but all of your answers right