Answer:

Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:

#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:

Specific volume,
:

The pressures at
is:

.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during 

b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :
Relative SV at
is

=
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:

Hence, the mean effective relative pressure is 674.95kPa
Answer:
A. 4,9 m/s2
B. 2,0 m/s2
C. 120 N
Explanation:
In the image, 1 is going to represent the monkey and 2 is going to be the package. Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

If the package is barely lifted, that means that T=m_2*g; then:

Solving the equation for a_mín, we have:

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:
For the monkey: 
For the package: 
The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:
For the package: 
We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

Solving a, we have

We can then replace this value of a in one for the sums of force and find the tension T:

Answer:
a I think hope this helps
Responder:
A) ω = 565.56 rad / seg
B) f = 90Hz
C) 0.011111s
Explicación:
Dado que:
Velocidad = 5400 rpm (revolución por minuto)
La velocidad angular (ω) = 2πf
Donde f = frecuencia
ω = 5400 rev / minuto
1 minuto = 60 segundos
2πrad = I revolución
Por lo tanto,
ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)
ω = (5400 * 2πrad) / 60 s
ω = 10800πrad / 60 s
ω = 180πrad / seg
ω = 565.56 rad / seg
SI)
Dado que :
ω = 2πf
donde f = frecuencia, ω = velocidad angular en rad / s
f = ω / 2π
f = 565.56 / 2π
f = 90.011669
f = 90 Hz
C) Periodo (T)
Recordar T = 1 / f
Por lo tanto,
T = 1/90
T = 0.0111111s
Answer:
1) El diámetro es de aproximadamente 913,987 cm.
2) La fuerza del cilindro es 5576850 kgf
Explanation:
1) Los parámetros dados son;
El volumen del aire = 13,122 litros = 13122000 cm³
La presión de trabajo = 8.5 kgf / cm²
La longitud del cilindro = 20 cm.
Por lo tanto, tenemos;
El área de la base del cilindro = π · r² = 13122000 cm³ / (20 cm) = 656100 cm²
r = √ (656100 / π) ≈ 456,994 cm
El diámetro = 2 × r ≈ 2 × 456.994 ≈ 913.987 cm
El diámetro ≈ 913,987 cm
2) La fuerza del cilindro = El área de la base del cilindro × La presión de trabajo
∴ La fuerza del cilindro = 656100 cm² × 8.5 kgf / cm² = 5576850 kgf
La fuerza del cilindro = 5576850 kgf