1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
10

The process by wich metamorphic rock changes to igneous rock begins with

Physics
1 answer:
Vlad1618 [11]3 years ago
5 0
The process in which metamorphic transforms into igneous starts with the metamorphic rock melting, then solidifying from cooling. And that's how the igneous rock is formed.

I hope I helped :)

- Shay❤
You might be interested in
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
3 years ago
A wave transfers:<br> Water<br> particles<br> energy<br> matter
SashulF [63]

Answer:

Particles in a water wave exchange kinetic energy for potential energy. When particles in water become part of a wave, they start to move up or down. This means that kinetic energy (energy of movement) has been transferred to them

Explanation:

hope this helps u ....

<em>pls mark this as the brainliest...</em>

6 0
3 years ago
In a flying ski jump, the skier acquires a speed of 110 km/h by racing down a steep hill and then lifts off into the air from a
matrenka [14]

Answer:

Approximately \displaystyle\rm \left[ \begin{array}{c}\rm191\; m\\\rm-191\; m\end{array}\right].

Explanation:

Consider this 45^{\circ} slope and the trajectory of the skier in a cartesian plane. Since the problem is asking for the displacement vector relative to the point of "lift off", let that particular point be the origin (0, 0).

Assume that the skier is running in the positive x-direction. The line that represents the slope shall point downwards at 45^{\circ} to the x-axis. Since this slope is connected to the ramp, it should also go through the origin. Based on these conditions, this line should be represented as y = -x.

Convert the initial speed of this diver to SI units:

\displaystyle v = \rm 110\; km\cdot h^{-1} = 110 \times \frac{1}{3.6} = 30.556\; m\cdot s^{-1}.

The question assumes that the skier is in a free-fall motion. In other words, the skier travels with a constant horizontal velocity and accelerates downwards at g (g \approx \rm -9.81\; m\cdot s^{-2} near the surface of the earth.) At t seconds after the skier goes beyond the edge of the ramp, the position of the skier will be:

  • x-coordinate: 30.556t meters (constant velocity;)
  • y-coordinate: \displaystyle -\frac{1}{2}g\cdot t^{2} = -\frac{9.81}{2}\cdot t^{2} meters (constant acceleration with an initial vertical velocity of zero.)

To eliminate t from this expression, solve the equation between t and x for t. That is: express t as a function of x.

x = 30.556\;t\implies \displaystyle t = \frac{x}{30.556}.

Replace the t in the equation of y with this expression:

\begin{aligned} y = &-\frac{9.81}{2}\cdot t^{2}\\ &= -\frac{9.81}{2} \cdot \left(\frac{x}{30.556}\right)^{2}\\&= -0.0052535\;x^{2}\end{aligned}.

Plot the two functions:

  • y = -x,
  • \displaystyle y= -0.0052535\;x^{2},

and look for their intersection. Refer to the diagram attached.

Alternatively, equate the two expressions of y (right-hand side of the equation, the part where y is expressed as a function of x.)

-0.0052535\;x^{2} = -x,

\implies x = 190.35.

The value of y can be found by evaluating either equation at this particular x-value: x = 190.35.

y = -190.35.

The position vector of a point (x, y) on a cartesian plane is \displaystyle \left[\begin{array}{l}x \\ y\end{array}\right]. The coordinates of this skier is approximately (190.35, -190.35). The position vector of this skier will be \displaystyle\rm \left[ \begin{array}{c}\rm191\\\rm-191\end{array}\right]. Keep in mind that both numbers in this vectors are in meters.

4 0
3 years ago
60m27Co → 6027Co Predict the type of radioactive emission produced from the decay of metastable cobalt-60 to cobalt-60. Describe
lara [203]
Some one already asked this question and you can copy paste and google it but I believe it is c you may want to double check
4 0
3 years ago
Describe the motion of an object in which it's speed is constant but the velocity is changing?​
Ostrovityanka [42]

Answer:

To summarize, an object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed. While the speed of the object is...

7 0
2 years ago
Other questions:
  • PLZ ANSWER ASAP
    13·1 answer
  • To get copper from the solid phase to the liquid phase must of the copper sample
    5·2 answers
  • When asked how to create an electromagnet, the best answer would be, "You can create an electromagnet by
    9·2 answers
  • l o which of the following can move from one atom to another A. protons Msideus. B. neutrons C. electrons the nucleus
    15·1 answer
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
  • If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose
    12·1 answer
  • When you mix two substances, the heat gained by one substance is equalto the heat lost by the other substance. Suppose you place
    14·1 answer
  • You are researching a fungus that can kill banana plants. Which source is
    6·1 answer
  • Which is true?
    10·1 answer
  • How do you find the voltage of a section of a parallel circuit?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!