Answer:
Explanation:
The energy and the frequency of electromagnetic radiation inversely proportional to the frequency of radiation.
So, as the wavelength increases, the energy and the frequency decreases.
F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
I know that refrigerator units do not use electromagnetic radiation
I am not certain about plasma however I believe it doeant either
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
False. They are arranged in a structure called a crystal lattice