To find the empirical formula you would first need to find the moles of each element:
58.8g/ 12.0g = 4.9 mol C
9.9g/ 1.0g = 9.9 mol H
31.4g/ 16.0g = 1.96 O
Then you divide by the smallest number of moles of each:
4.9/1.96 = 2.5
9.9/1.96 = 6
1.96/1.96 = 1
Since there is 2.5, you find the least number that makes each moles a whole number which is 2.
So the empirical formula is C5H12O2.
Answer:
490 in^3 = 8.03 L
Explanation:
Given:
The engine displacement = 490 in^3
= 490 in³
To determine the engine piston displacement in liters L;
(NOTE: Both in^3 (in³) and L are units of volume). Hence, to find the engine piston displacement in liters (L), we will convert in^3 to liters (L)
First, we will convert in³ to cm³
Since 1 in = 2.54 cm
∴ 1 in³ = 16.387 cm³
If 1 in³ = 16.387 cm³
Then 490 in³ = (490 in³ × 16.387 cm³) / 1 in³ = 8029.63 cm³
∴ 490 in³ = 8029.63 cm³
Now will convert cm³ to dm³
(NOTE: 1 L = 1 dm³)
1 cm = 1 × 10⁻² m = 1 × 10⁻¹ dm
∴ 1 cm³ = 1 × 10⁻⁶ m³ = 1 × 10⁻³ dm³
If 1 cm³ = 1 × 10⁻³ dm³
Then, 8029.63 cm³ = (8029.63 cm³ × 1 × 10⁻³ dm³) / 1 cm³ = 8.02963 dm³
≅ 8.03 dm³
∴ 8029.63 cm³ = 8.03 dm³
Hence, 490 in³ = 8029.63 cm³ = 8.03 dm³
Since 1L = 1 dm³
∴ 8.03 dm³ = 8.03 L
Hence, 490 in³ = 8.03 L
When The balanced equation is:
2Al + 3CuCl2 ⇒3 Cu + 2AlCl3
So, we want to find the limiting reactant:
1- no. of moles of 2Al = MV/n = (Wt * V )/ (M.Wt*n*V) = Wt / (M.Wt *n)
where M= molarity, V= volume per liter and n = number of moles in the balanced equation.
by substitute:
∴ no. of moles of 2Al = 0.2 / (26.98 * 2)= 0.003706 moles.
2- no.of moles of 3CuCl2= M*v / n = (0.5*(15/1000)) / 3= 0.0025 moles.
So, CuCl2 is determining the no.of moles of the products.
∴The no. of moles of 3Cu = 0.0025 moles.
∴The no.of moles of Cu= 3*0.0025= 0.0075 moles.
and ∵ amount of weight (g)= no.of moles * M.Wt = 0.0075 * M.wt of Cu
= 0.0075 * 63.546 =0.477 g
Answer:
16.0 g; 3.1 mol
Explanation:
(a) Mass of O atoms
Mass = 6.022 × 10^23 atoms × (2.66 × 10^-23 g/1 atom) = 16.0 g
(b) Moles of O atoms
0.050 kg = 50 g
Moles = 50 g × (1 mol/16.0 g) = 3.1 mol