Given :
Two forces act on a 6.00-kg object. One of the forces is 10.0 N.
Acceleration of object 2 m/s².
To Find :
The greatest possible magnitude of the other force.\
Solution :
Let, other force is f.
So, net force, F = 10 + f.
Now, acceleration is given by :

Therefore, the greatest possible magnitude of the other force is 2 N.
Hence, this is the required solution.
Answer:
(I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Explanation:
Given that,
Length of copper wire = 1.70 m
Diameter = 0.700 mm
Length of carbon piece = 20.0 cm
Cross section area
(I). We need to calculate the area of copper wire
Using formula of area


We need to calculate the resistance
Using formula of resistance

Put the value into the formula


(II). We need to calculate the resistance
Using formula of resistance

Put the value into the formula


Hence, (I). The resistance of the copper wire is 0.0742 Ω.
(II). The resistance of the carbon piece is 1.75 Ω.
Period, T = 1/ f.
f = frequency = 200 Hz.
Period T = 1/200 = 0.005 seconds.
Answer: Use this F=Ma.
Explanation: So your answer will be
F=1 Kg+9.8 ms-2
So the answer will be
F=9.8N
How'd I do this?
I just used Newton's second law of motion.
I'll also put the derivation just in case.
Applied force α (Not its alpha, proportionality symbol) change in momentum
Δp α p final- p initial
Δp α mv-mu (v=final velocity, u=initial velocity and p=v*m)
or then
F α m(v-u)/t
So, as we know v=final velocity & u= initial velocity and v-u/t =a.
So F α ma, we now remove the proportionality symbol so we'll add a proportionality constant to make the RHS & LHS equal.
So, F=<em>k</em>ma (where k is the proportionality constant)
<em>k</em> is 1 so you can ignore it.
So, our equation becomes F=ma
The answer is D. disorganized