Answer:
∑ τ =0, L₀ = 
Explanation:
In a circular turning movement, when the arms are extended and then contracted in two possibilities:
- They are lowered the force of gravity is what pulls them, the tension of the muscle becomes zero to allow this movement.
In this movement the force is vertical(gravity) and the movement of the center of mass of each arm is vertical, so that the work is the weight value of the arm by the distance traveled by the center of mass.
- Another possibility is that the arms have stuck to the body, in this case the person's muscles perform the force, this force is horizontal and the displacement is the horizontal of the center of mass of the arms from the extended position to the contracted
In these movements the torque of the external force is equal for each arm, but in the opposite direction, so they are canceled where a net torque of zero, this causes the angular momentum to be preserved, which changes is the moment of inertia of the system and therefore you must also change the angular velocity to keep your product constant
∑ τ =0
L₀ = 
I₀ w₀ = I w
<h2>
Energy used by heater is 8.21 x 10⁶ J</h2>
Explanation:
Energy = Power x Time
Power = Voltage x Current
Voltage = 120 V
Current = 9.5 A
Power = Voltage x Current
Power = 120 x 9.5 = 1140 W
Time = 2 hours = 2 x 60 x 60 = 7200 s
Energy = Power x Time
Energy = 1140 x 7200
Energy = 8208000 J
Energy used by heater is 8.21 x 10⁶ J
Answer:
Weight = 8.162 Newton.
Explanation:
Given the following data;
Mass = 2.2 kg
Acceleration due to gravity = 3.71 N/kg
To find the weight of the textbook;
Weight = mass * acceleration due to gravity
Weight = 2.2 * 3.71
Weight = 8.162 N
Therefore, the weight of the science textbook in mars is 8.162 Newton.
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186