Hi there!
According to Newton's second law:
∑F = m · a, where:
∑F = net force (N = kgm/s²)
m = mass (kg)
a = acceleration (m/s²)
Rearrange to solve for acceleration:
F/m = a
20N / 4.0kg = 5 m/s²
The solution for this problem is:
Let u denote speed.
Equating momentum before and after collision:
= 0.060 * 40 = (1.5 + 0.060) u
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
Answer:
Apply the following formulae horizontally And get A value for time
Remember horizontal acceleration is zero

and then to find the height apply the same above equation vertically...remember vertical initial velocity is zero

Answer:
Explanation:
Given
1 mole of perfect, monoatomic gas
initial Temperature


Work done in iso-thermal process
=initial pressure
=Final Pressure

Since it is a iso-thermal process therefore q=w
Therefore q=39.64 J
(b)if the gas expands by the same amount again isotherm-ally and irreversibly
work done is





Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;

Therefore, the frequency of this mode of vibration is 138.87 Hz