Right side:
(1/27)^(2x+10)
=(3^-3)^(2x+10)
= 3^(-6x - 30)
Re-write both sides:
3^(4x-5) = 3^(-6x - 30)
from here, you can solve x
4x - 5 = -6x - 30
4x + 6x = -30 + 5
10x = -25
x = -2.5
Answer:
The inequality which represents the graph is y ≤ -2x + 1 ⇒ A
Step-by-step explanation:
To solve the question you must know some facts about inequalities
- If the sign of inequality is ≥ or ≤, then it represents graphically by a solid line
- If the sign of inequality is > or <, then it represents graphically by a dashed line
- If the sign of inequality is > or ≥, then the area of the solutions should be over the line
- If the sign of inequality is < or ≤, then the area of the solutions should be below the line
Let us study the graph and find the correct answer
∵ The line represented the inequality is solid
∴ The sign of inequality is ≥ or ≤
→ That means the answer is A or B
∵ The shaded area is the area of the solutions of the inequality
∵ The shaded area is below the line
∴ The sign of inequality must be ≤
→ That means the correct answer is A
∴ The inequality which represents the graph is y ≤ -2x + 1
Answer:
d. 11.6
Step-by-step explanation:
The results of the first die and the second one are independent to each other. The expected value of Z is obtained, therefore, by summing the expected values of both X and Y, because Z = X+Y and X and Y are independent. As a result 
I think it’s d the readers choice of word when responding to a text .
Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.