Answer:
Atoms form chemical bonds to make their outer electron shells more stable. ... An ionic bond, where one atom essentially donates an electron to another, forms when one atom becomes stable by losing its outer electrons and the other atoms become stable (usually by filling its valence shell) by gaining the electrons.
Explanation:
Answer:
Pro exercise con suffication
Explanation:
...
Here are the possible answers for the following questions above:
1. H-CC-H (name) - C<span>. ethyne
</span>2. cyclic compound with both saturated and unsaturated characteristics - G<span>. benzene
</span>3. CnH2n - E<span>. general formula for alkenes
</span>4. reaction typical of unsaturated hydrocarbons - A<span>. addition
</span>5. CnH2n-2 - F<span>. general formula for alkynes
</span>6. series name of hydrocarbons with triple bond - D<span>. alkyne
</span>7. CnH2n+2 - B<span>. general formula of alkanes</span>
Answer:
0.4 M
Explanation:
Molarity is defined as moles of solute, which in your case is sodium hydroxide,
NaOH
, divided by liters of solution.
molarity
=
moles of solute
liters of solution
Notice that the problem provides you with the volume of the solution, but that the volume is expressed in milliliters,
mL
.
Moreover, you don't have the number of moles of sodium hydroxide, you just have the mass in grams. So, your strategy here will be to
determine how many moles of sodium hydroxide you have in that many grams
convert the volume of the solution from milliliters to liters
So, to get the number of moles of solute, use sodium hydroxide's molar mass, which tells you what the mass of one mole of sodium hydroxide is.
7
g
⋅
1 mole NaOH
40.0
g
=
0.175 moles NaOH
The volume of the solution in liters will be
500
mL
⋅
1 L
1000
mL
=
0.5 L
Therefore, the molarity of the solution will be
c
=
n
V
c
=
0.175 moles
0.5 L
=
0.35 M
Rounded to one sig fig, the answer will be
c
=
0.4 M
Explanation: