Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
There are 8.61 × 10²⁰ atoms in 0.290 g P₂O₅.
Step 1. Convert <em>grams of P₂O₅ to moles of P₂O₅</em>.

Step 2. Convert <em>moles of P₂O₅ to molecules of P₂O₅</em>.


Step 3. Convert <em>molecules of P₂O₅ to atoms</em>.
There are seven atoms in 1 mol P₂O₅.
∴ 
The answer is sodium silicon and argon
Explanation:
The four nitrogenous bases present in DNA are adenine (A), guanine (G), cytosine (C) and thymine (T).
The Doppler effect doesn't just apply to sound. It works with all types of waves, which includes light. Edwin Hubble used the Doppler effect to determine that the universe is expanding. Hubble found that the light from distant galaxies was shifted toward lower frequencies, to the red end of the spectrum. This is known as a red Doppler shift, or a red-shift. If the galaxies were moving toward Hubble, the light would have been blue-shifted.