Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.
![Ba(ClO_3)_2\rightarrow BaCl_2+3O_2](https://tex.z-dn.net/?f=Ba%28ClO_3%29_2%5Crightarrow%20BaCl_2%2B3O_2)
A double displacement reaction is one in which exchange of ions take place.
![NaNO_2+HCl\rightarrow NaCl+HNO_2](https://tex.z-dn.net/?f=NaNO_2%2BHCl%5Crightarrow%20NaCl%2BHNO_2)
Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.
![CaO+CO_2\rightarrow CaCO_3](https://tex.z-dn.net/?f=CaO%2BCO_2%5Crightarrow%20CaCO_3)
Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.
![ZnSO_4+Mg\rightarrow MgSO_4+Zn](https://tex.z-dn.net/?f=ZnSO_4%2BMg%5Crightarrow%20MgSO_4%2BZn)
M/sec = 112 km / 1 hr / 1 min / 1000 meters
hr / 60 min / 60 sec / 1 km
So the answer is = 31.1 meters/sec
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:
![k_1= A*e^{^{^{ \dfrac {- Ea_1}{RT}}](https://tex.z-dn.net/?f=k_1%3D%20A%2Ae%5E%7B%5E%7B%5E%7B%20%5Cdfrac%20%7B-%20Ea_1%7D%7BRT%7D%7D)
Rate factor in the presence of catalyst:
![k_2= A*e^{^{^{ \dfrac {- Ea_2}{RT}}](https://tex.z-dn.net/?f=k_2%3D%20A%2Ae%5E%7B%5E%7B%5E%7B%20%5Cdfrac%20%7B-%20Ea_2%7D%7BRT%7D%7D)
Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:
![\dfrac{k_2}{k_1}={ \dfrac {e^{ \dfrac {- Ea_2}{RT} }} { e^{ \dfrac {- Ea_1}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%20%5Cdfrac%20%7B-%20Ea_2%7D%7BRT%7D%20%7D%7D%20%7B%20e%5E%7B%20%5Cdfrac%20%7B-%20Ea_1%7D%7BRT%7D%20%7D%7D)
![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;
![Ea_1-Ea_2 = RT In \dfrac{k_2}{k_1}](https://tex.z-dn.net/?f=Ea_1-Ea_2%20%3D%20RT%20In%20%5Cdfrac%7Bk_2%7D%7Bk_1%7D)
Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;
![Ea_1-Ea_2 = 8.314 \ J/mol/K * 298 \ K * In (10^6)](https://tex.z-dn.net/?f=Ea_1-Ea_2%20%3D%208.314%20%5C%20%20J%2Fmol%2FK%20%2A%20298%20%5C%20K%20%2A%20%20In%20%2810%5E6%29)
![Ea_1-Ea_2 = 34228.92 \ J/mol](https://tex.z-dn.net/?f=Ea_1-Ea_2%20%3D%2034228.92%20%5C%20J%2Fmol)
![\mathbf{Ea_1-Ea_2 = 34.23 \ kJ/mol}](https://tex.z-dn.net/?f=%5Cmathbf%7BEa_1-Ea_2%20%3D%2034.23%20%5C%20kJ%2Fmol%7D)
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
It's an allele not a chromosome
Each period in the periodic table corresponds to a principal energy level