B and e
first we need to balance the NH3 hence first we do E and multiplying the coefficient by 2. that will leave us with N2+H2–>2NH3.
N2 and H2 is balanced and now all that is left to do is the balance H2 by 3 as there is 6H on RHS hence we need 6H on LHS
Answer:
–500KJ
Explanation:
Data obtained from the question include the following:
Heat of reactant (Hr) = 800KJ
Heat of product (Hp) = 300KJ
Enthalphy change (ΔH) =..?
The enthalphy change is simply defined as the difference between the heat of product and the heat of reactant i.e
Enthalphy change = Heat of product – Heat of reactant
ΔH = Hp – Hr
With the above formula, we can easily calculate the enthalphy change as follow
ΔH = Hp – Hr
ΔH = 300 – 800
ΔH = –500KJ.
Therefore, the overall energy change for the reaction between hydrogen and oxygen shown in the diagram above is –500KJ
Answer: 
Explanation:
Elevation in boiling point is given by:

= Elevation in boiling point
i= vant hoff factor = 3 (number of ions an electrolyte produce on complete dissociation)

= freezing point constant = 
m= molality

Weight of solvent (water)= 1.000 kg
Molar mass of solute
= 142 g/mol
Mass of solute
= 175.0 g


Thus the boiling point of water when 175.0 g of
, a strong electrolyte is dissolved in 1.000 Kg of water is 
In every molecule of

there is 8 atoms of Carbon.
IF we have 3.7 moles of

to find the number of moles of Carbon, just multiply by 8
3.7 * 8 = 29.6 mol Carbon