Answer: The gas generated by two antacid tablets has a smaller volume.
Explanation:
Since the antiacid is the limiting reagent, we know that the more tablets there are, the more gas there will be.
This means that there will be more gas generated by the four antiacid tablets when compared to the two antiacid tablets, which gives us that the gas generated by the two antiacid tablets has a smaller volume.
Answer:
= 61.25 g
= 88.75 g
Explanation:
=
= 50 g
⇒
=
= 1.25 (moles)
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
2 : 1 : 1 : 2
1.25 (moles)
⇒
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 98 = 61.25 g
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 142 = 88.75 g
The answer is a, because the population number has increased.
Answer:
1 mole of CaC₂ will produce 26g of C₂H₂ or 64.1g of CaC₂ will produce 26g of C₂H₂
Explanation:
Hello,
To solve this question, we'll require a balanced chemical equation of reaction between calcium carbide and water.
Equation of reaction
CaC₂ + 2H₂O → Ca(OH)₂ + C₂H₂
Molar mass of calcium carbide (CaC₂) = 64.1g/mol
Molar mass of water (H₂O) = 18g/mol
Molar mass of calcium hydroxide (Ca(OH)₂) = 74g/mol
Molar mass of ethyne (C₂H₂) = 26g/mol
From the equation of reaction, 1 mole of CaC₂ will produce 1 mole of C₂H₂
1 mole of CaC₂ = mass / molar mass
Mass = 1 × 64.1
Mass = 64.1g
1 mole of C₂H₂ = mass / molar mass
Mass = 1 × 26
Mass = 26g
Therefore, 1 mole of CaC₂ will produce 26g of C₂H₂
Note: this is a hypothetical calculation since we were not given the initial mass of CaC₂ that starts the reaction
Answer:

Explanation:
Hello,
In this case, since iodine is ideal we can use the ideal gas equation to compute the moles at the given conditions, considering the following units:



Best regards.