Answer:
the result for the following are (a) P is directly proportional to n
(b) V is directly proportional to T (c) P is directly proportional to T (d) T is inversly proportional to V (e) P is inversely proportional to V
Answer : The molar mass of the solute would be low.
Explanation :
Formula used for depression in freezing point is:

where,
= change in freezing point
= freezing point of solution
= freezing point of water
i = Van't Hoff factor
= freezing point constant
m = molality
= mass of solute
= mass of solvent
= molar mass of solute
From the formula we conclude that, when the freezing point of the solution read incorrectly that is freezing point of the solution is lower than the true freezing point then this means that change in freezing point would be high and the molar mass of the solute would be low.
Hence, the molar mass of the solute would be low.
The reaction will be: FeBr2 + K --> KBr + Fe
Balancing gives: FeBr2 + 2K --> 2KBr + Fe
The molar mass of FeBr2 is 55.85 + 2*79.9 = 215.65 g/mol.
We divide 40 g / 215.65 g/mol = 0.185 mol FeBr2
Based on stoichiometry:
(0.185 mol FeBr2)(2 mol KBr/1 mol FeBr2) = 0.370 mol KBr
Explanation:
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons
Answer:
So first thing to do in these types of problems is write out your chemical reaction and balance it:
Mg + O2 --> MgO
Then you need to start thinking about moles of Magnesium for moles of Magnesium Oxide. Based on the above equation 1 mole of Magnesium is needed to make one mole of Magnesium Oxide.
To get moles of magnesium you need to take the grams you started with (.418) and convert to moles by dividing by molecular weight of Mg (24.305), this gives you .0172 moles of Mg.
The theoretical yield would be the assumption that 100% of the magnesium will be converted into Magnesium Oxide, so you would get, based on the first equation, .0172 mol of MgO. Multiplying this by the molecular weight of MgO (24.305+16) gives us .693 g of MgO.
The percent yield is what you actually got in the experiment, and for this you subtract off the total mass from the crucible mass, or 27.374 - 26.687, which gives .66 g of MgO obtained.
Percent yield is acutal/theoretical, .66/.693, or 95.24%.
I'll let you do the same for the second trial, and average percent yield is just an average of the two trials percent yield.
Hope this helps.