1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenaWriter [7]
2 years ago
12

Which object is moving faster? A

Physics
2 answers:
Amiraneli [1.4K]2 years ago
4 0

Answer:

A

Explanation:

vfiekz [6]2 years ago
3 0

Answer:

A

Explanation:

You might be interested in
Which layer of the sun's atmosphere are you looking at when you look at me in image of the Sun
Hitman42 [59]
The answer is Photosphere.  The photosphere is the lowest layer<span> of the </span>solar<span> atmosphere. It is essentially the </span>solar<span> "surface" that </span>we see<span> when </span>we look<span> at the </span>Sun in "white" light.  It is <span>like a glowing fog, so at a distance, it </span>looks<span> solid, the same way a cloud looks solid from a distance.</span>
7 0
3 years ago
Please help <br>problems 2a.,2b.,3a.,and 3b.​
Darina [25.2K]

Answer:

2a) x = 32 [mil/h]; 2b) t = 0.5[h]; 3a) t = 2.5 [h]; 3b) x = 185[mil]

Explanation:

2a)

We can solve this problem by using the kinematics equation, which relates speed to time and displacement.

v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 32 [\frac{mil}{h}] \\t=time = 1 [h]\\x=v*t\\x=32[\frac{mil}{h} ]*1[h]\\x=32[mil}

2b)

We can solve this problem by using the kinematics equation, which relates speed to time and displacement.

v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{420}{840}\\ t=0.5[h]

3a)

We can solve this problem by using the kinematics equation, which relates speed to time and displacement.

v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{35}{14}\\ t=2.5[h]

3b)

We can solve this problem by using the kinematics equation, which relates speed to time and displacement.

v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 74 [\frac{mil}{h}] \\t=time = 2.5 [h]\\x=v*t\\x=74[\frac{mil}{h} ]*2.5[h]\\x=185[mil}

8 0
3 years ago
If an object placed in a fluid experiences a buoyant force equal to the weight of the fluid it displaces, the object will float.
enyata [817]

Answer: The answer is False

Explanation: This is for the one's in apex <>

6 0
3 years ago
Three equal charge 1.8*10^-8 each are located at the corner of an equilateral triangle ABC side 10cm.calculate the electric pote
Arlecino [84]

Answer:

If all these three charges are positive with a magnitude of 1.8 \times 10^{-8}\; \rm C each, the electric potential at the midpoint of segment \rm AB would be approximately 8.3 \times 10^{3}\; \rm V.

Explanation:

Convert the unit of the length of each side of this triangle to meters: 10\; \rm cm = 0.10\; \rm m.

Distance between the midpoint of \rm AB and each of the three charges:

  • d({\rm A}) = 0.050\; \rm m.
  • d({\rm B}) = 0.050\; \rm m.
  • d({\rm C}) = \sqrt{3} \times (0.050\; \rm m).

Let k denote Coulomb's constant (k \approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2}.)

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm A})}.

Electric potential due to the charge at \rm B: \displaystyle \frac{k\, q}{d({\rm B})}.

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm C})}.

While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.

Hence, the electric field at the midpoint of \rm AB due to all these three charges  would be:

\begin{aligned}& \frac{k\, q}{d({\rm A})} + \frac{k\, q}{d({\rm B})} + \frac{k\, q}{d({\rm C})} \\ &= k\, \left(\frac{q}{d({\rm A})} + \frac{q}{d({\rm B})} + \frac{q}{d({\rm C})}\right) \\ &\approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2} \\ & \quad \quad \times \left(\frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{\sqrt{3} \times (0.050\; \rm m)}\right) \\ &\approx 8.3 \times 10^{3}\; \rm V\end{aligned}.

4 0
3 years ago
A person pulls a bucket of water up from a well with a rope. Assume the initial and final speeds of the bucket are zero (Vi-Vf-0
n200080 [17]

Answer:

a

This a closed system because the mass of the system is conserved

The energy system that undergoes change is the Potential energy system

The energy system diagram is shown on the first uploaded image

b

Work done = Change in gravitational potential energy

So solving algebraically for work done would be

    Work done   = m*g*h

where m is mass

          g is acceleration due to gravity

          and h is the height

c

Work done in terms of force and distance is = mg

where  m is mass of bucket and

            g is acceleration due to gravity  

Explanation:

a) At the start, potential and kinetic energy were zero. so, energy is zero.

As the person pulls the bucket up, the potential energy becomes mgh.

so,final energy will be consisting of only potential energy.

B) Here work done is equal to change in gravitational potential energy.

W = \Delta P.E

W = m*g*h

where g = 9.9 m/s^2

C) Work = force * distance

mgh = force * h

force = mg

force = weight of bucket

6 0
3 years ago
Other questions:
  • At distances greater than 2 femtometers, the nuclear strong force is stronger than (select all that apply):
    13·2 answers
  • Referring to the _______scale is a way to estimate the wind speed.
    14·2 answers
  • A rectangular billboard 5 feet in height stands in a field so that its bottom is 6 feet above the ground. A nearsighted cow with
    5·2 answers
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    6·1 answer
  • When astronauts travel to the moon, their bodies experience a lower gravitational pull than on Earth. Which type of pull are the
    5·2 answers
  • Two copper rods are separated by a small gap at B. Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the f
    12·1 answer
  • If a gun is sighted to hit targets that are at the same height as the gun and 95 m away, how low will the bullet hit if aimed di
    7·1 answer
  • Calculate the parallel component of the weight of the object on the inclined plane below.
    7·1 answer
  • A 1.0 kg mass at the end of a spring has an amplitude of 0.10 m and vibrates 2.0 times per second. What is its velocity when it
    6·1 answer
  • How high does Pete lift his sledge hammer if he used a force of 25N to lift the hammer while doing 50J of work?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!