Explanation:
Below is an attachment containing the solution.
Answer:
θ = 6.3 *10³ revolutions
Explanation:
Angular acceleration of the drill
We apply the equations of circular motion uniformly accelerated
ωf= ω₀ + α*t Formula (1)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (s)
Data
ω₀ = 0
ωf = 350000 rpm = 350000 rev/min
1 rev = 2π rad
1 min= 60 s
ωf = 350000 rev/min =350000*(2π rad/60 s)
ωf = 36651.9 rad/s
t = 2.2 s
We replace data in the formula (2) :
ωf= ω₀ + α*t
36651.9 = 0 + α* (2.2)
α = 36651.9 / (2.2)
α = 17000 rad/s²
Revolutions made by the drill
We apply the equations of circular motion uniformly accelerated
ωf²= ω₀ ²+ 2α*θ Formula (2)
Where:
θ : Angle that the body has rotated in a given time interval (rad)
We replace data in the formula (2):
(ωf)²= ω₀²+ 2α*θ
(36651.9)²= (0)²+ 2( 17000 )*θ
θ = (36651.9)²/ (34000 )
θ = 39510.64 rad = 39510.64 rad* (1 rev/2πrad)
θ = 6288.31 revolutions
θ = 6.3 *10³ revolutions
C is not mechanical weathering. It is chemical weathering.
Answer:
Electronegativity is a chemical property at the top of the periodic table
Explanation:
electronegativity is a chemical property that measures the ability of an atom to attract a bonding pair of electrons when it is part of a compound
it's a property of atom that increases as you go to the right and up.
One example is the Pauling scale. it is a numerical scale of electronegativities. It was first developed by Linus Pauling.
it is commonly used to calculate the ability of electronegativity to attract electrons to itself.
The most common electronegative element is Flourine, having an assigned value of 4.0, ranging down to caesium and francium, having the least electronegative at 0.7
Answer:
yes ,what's the question
and if the question is why
then it's for gravity