Answer:
mole fraction of N_2 O = 0.330
mole of fraction SF_4 = 0.669
PRESSURE OF N_2 O = 39127.053 Pa
pressure of SF_4 = 792126.36
Total pressure = 118253.413 Pa
Explanation:
Given data:
volume of tank 8 L
Weight of dinitrogen difluoride gas 5.53 g
weight of sulphur hexafluoride gas 17.3 g
Amount of 
amount of 
mole fraction of 
mole of fraction
PV = nRT
P of N_2 O 
mole of SF_4
Total pressure = 39127.053 + 79126.36 = 118253.413 Pa
The Kelvin temperature of a substance is directly equal to the avg kinetic energy of particles of a substance. Hope that is what your looking for
Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.