You can solve this problem through dimensional analysis.
First, find the molar mass of NaHCO3.
Na = 22.99 g
H = 1.008 g
C = 12.01 g
O (3) = 16 (3) g
Now, add them all together, you end with with the molar mass of NaHCO3.
22.99 + 1.008 + 12.01 + 16(3) = 84.008 g NaHCO3. This number means that for every mole of NaHCO3, there is 84.008 g NaHCO3. In simpler terms, 1 mole NaHCO3 = 84.008 g NaHCO3.
After finding the molar mass of sodium bicarbonate, now you can use dimensional analysis to solve for the number of moles present in 200. g of sodium bicarbonate.

Cross out the repeating units which are g NaHCO3, and the remaining unit is mole NaHCO3
200. * 1 = 200
200/ 84.008 = 2.38
Notice how there are only 3 sig figs in the answer. This is because the given problem only gave three sig figs.
Your final answer is 2.38 mol NaHCO3.
Answer:
Explanation:
Examples of pure substances include tin, sulfur, diamond, water, pure sugar (sucrose), table salt (sodium chloride) and baking soda (sodium bicarbonate). Crystals, in general, are pure substances. Tin, sulfur, and diamond are examples of pure substances that are chemical elements.
Argon is a noble gas. Argon has a full outer shell. This makes it so that it does not need to react with any of the other elements to be stable.
With Rubidium and Cobalt its a whole different story.
I hope that helps!
Hdhdjejdhebdehxhshwhdb d nonsense