The molar mass of the compound potassium nitrate, KNO3 is equal to 101.1032 g/mol. Then, we determine the number of moles present in the given amount,
n = 11.75g / (101.1032 g/mol) = 0.116 mol
Then, molarity is calculated by dividing the number of moles by the volume of the solution. The answer is therefore 0.058 M.
Because they can't get trapped in.
Answer:
4FeS + 7O₂ ----> 2Fe₂O₃ + 4SO₂
Explanation:
You have to drag the elements shown on the right under the formula. For example, you would have to drag 4 of the FeS molecules under the 4FeS text in the formula. Then place 7 O₂ molecules under the 7O₂ text, etc.
Answer:
4KO₂ + 2CO₂ -> 2K₂CO₃ + 3O₂
<u> Step 1: Find the moles of O₂.</u>
n(O₂) = mass/ Mr.
n(O₂) = 100 / 32 = 3.125 mol
<u>Step 2: Find the ratio between KO₂ and O₂.</u>
<u>KO₂ </u> : <u> O₂</u>
4 : 3
4/3 : 1
(4*3125)/3 : 3.125
=4.167 mol of KO₂
Thus now we know, to produce 100 g of O₂, we need 4.167mol of KO₂
<u>Step 3: Find the mass of KO₂:</u>
<u />
mass = mol * Mr. (KO₂)
Mass = 4.167* 71.1
Mass = 296.25 g