Yes they acquire both poles. Each side facing each other should be opposites
So A is N
C is S
D is N
B is S
Answer:
If you use the same force to push a truck and a car, the car will have more acceleration than the truck because the car has less mass.
It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the shopping cart.
When a person kicks a ball the person exerts force in a specific direction, that is the direction in which it will travel. In addition to this, the stronger the ball is kicked, the stronger the force we put on it and the further away it will travel.
Suppose two people are walking and among the two people, if one is heavier than the other, then the one weighing heavier will walk slower because the acceleration of the person weighing lighter is greater.
When riding a bicycle, the bicycle acts as mass and our leg muscles pushing on the pedals of the bicycle is the force.
Explanation:
According to the planetary model, the speed of an electron revolving around the nucleus is given as follows;
v = e/√4
∈₀mr.
The orbital speed of an electron, orbiting around a nucleus in a circular orbit of radius 50 consistent with the Bohr model, regularly called a planetary version, the electrons encircle the nucleus of the atom in precise allowable paths referred to as orbits. whilst the electron is in one of these orbits, its energy is fixed.
The ground nation of the hydrogen atom, wherein its electricity is lowest, is whilst the electron is inside the orbit that is closest to the nucleus. The orbits which can be similar to the nucleus are all of the successively extra power. The electron isn't allowed to occupy any of the areas in between the orbits. A regular analogy to the Bohr version is the rungs of a ladder pa is 2. 2×106ms−1.
Learn more about electrons here; brainly.com/question/12889606
#SPJ4
Answer:
Henri’s wave and Geri’s wave have the same amplitude and the same energy
Explanation:
The amplitude of a wave is the distance between the midpoint and the trough (or the crest). This is equivalent to half the distance between the trough and the crest. Therefore:
- amplitude of Henri's wave: 4 cm
- amplitude of Geri's wave: 8/2 = 4 cm
The energy of a wave is directly proportional to its amplitude.