Answer:
1.23 m/s
Explanation:
p=mv
57.2 = 46.5v
v= 57.2/46.5
v= 1.23
If you want to verify your answer, just insert the value of v in the equation.
Linear expansivity, area expansivity and volume or cubic expansivity are
Nothing can travel faster than the speed of light. As such, perceptions of objects and time change as they approach light speed, but the laws of physics remain consistent regardless of speed. Objects will appear shortened and time will appear to slow down around an observer approaching near light speeds, but all quantities still exist as they did before and all causality is preserved, even if observers in different points or traveling at different speeds will report different things.
Answer:
A concave mirror has a radius of curvature of 20 cm. What is it's focal length? If an object is placed 15 cm in front of it, where would the image be formed? What is it's magnification?
The focal length is of 10 cm, object distance is 30 cm and magnification is -2.
Explanation:
Given:
A concave mirror:
Radius of curvature of the mirror, as C = 20 cm
Object distance in-front of the mirror = 15 cm
a.
Focal length:
Focal length is half of the radius of curvature.
Focal length of the mirror =
= 10 cm
According to the sign convention we will put the mirror on (0,0) point, of the Cartesian coordinate open towards the negative x-axis.
Object and the focal length are also on the negative x-axis where focal length and image distance will be negative numerically.
b.
We have to find the object distance:
Formula to be use:
⇒ 
⇒ Plugging the values.
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
Image will be formed towards negative x-axis 30 cm away from the pole.
c.
Magnification (m) is the negative ratio of mage distance and object distance:
⇒ 
⇒ 
⇒ 
The focal length of the concave mirror, is of 10 cm, object distance is 30 cm and magnification is -2.
Answer:
The answer to your question is: F = 70 pounds
Explanation:
To calculate the net force, only substract the left value to the right value.
F = F right - F left
F = 100 p - 30 p
F = 70 pounds