Answer:
The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, T. When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object: T = mg.
Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
No, we cannot touch gravity nor can we physically see it. We can only see how it works.
Rutherford's model of the atom (ESAAQ) Rutherford carried out some experiments which led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons.
Answer:
3.7 A
Explanation:
Parameters given:
Magnetic field strength, B = 5 * 10^(-5) T
Distance of magnetic field from wire, r = 1.5 cm = 0.015 m
The magnetic field, B, due to a current, I, flowing a wire is given as:
B = (μ₀*I) / 2πr
Where μ₀ = permeability of free space
To get the current, I, we make I the subject of the formula:
I = (2πr * B) / μ₀
I = (2 * 3.142 * 5 * 10^(-5)) / (1.25663706 × 10^(-6))
I = 3.7 A