The interquartile range is 4
This is the concept of trigonometry, to get the possible length of side a we use the sine rule which states that:
a/sin A=b/sin B=c/sin B
where;
a,b and c are the sides
A,B and C are the angles
thus the value of A could be as follows;
assuming the triangle is an isosceles triangle, the base angles will be:
(180-40)/2=70
thus;
15/sin 70=a/sin 40
a=(15sin40)/sin70
a=10.26 inches
thus the possible size of a=10.26 inches
Check the picture below
now, <span>26°35' is just 26bdegrees and 35 minutes
your calculator most likely will have a button [ </span><span>° ' " ] to enter degrees and minutes and seconds
there are 60 minutes in 1 degree and 60 seconds in 1 minute
so.. you could also just convert the 35' to 35/60 degrees
so </span>
![\bf 26^o35'\implies 26+\frac{35}{60}\implies \cfrac{1595}{60}\iff \cfrac{319}{12} \\\\\\ tan(26^o35')\iff tan\left[ \left( \cfrac{391}{12} \right)^o \right]](https://tex.z-dn.net/?f=%5Cbf%2026%5Eo35%27%5Cimplies%2026%2B%5Cfrac%7B35%7D%7B60%7D%5Cimplies%20%5Ccfrac%7B1595%7D%7B60%7D%5Ciff%20%5Ccfrac%7B319%7D%7B12%7D%0A%5C%5C%5C%5C%5C%5C%0Atan%2826%5Eo35%27%29%5Ciff%20tan%5Cleft%5B%20%5Cleft%28%20%5Ccfrac%7B391%7D%7B12%7D%20%5Cright%29%5Eo%20%5Cright%5D)
now, the angle is in degrees, thus, make sure your calculator is in Degree mode