For the given parabola, the axis of symmetry is x = 2.
<h3>
How to get the axis of symmetry?</h3>
For any given parabola, we define the axis of symmetry as a line that divides the parabola in two equal halves.
For a regular parabola, we define the axis of symmetry as:
x = h
Where h is the x-component of the vertex.
Remember that for the general parabola:
y = a*x^2 + b*x + c
The x-value of the vertex is:
h = -b/(2a)
Then for the function:
f(x)=−2x²+8x−2
We get:
h = -8/(2*-2) = 2
Then the axis of symmetry is x = 2.
If you want to learn more about parabolas, you can read:
brainly.com/question/1480401
Answer:
5.1
Step-by-step explanation:
Compounded Annually:
A=P(1+r)^t
A=P(1+r)
t
A=27200\hspace{35px}P=20000\hspace{35px}r=0.062
A=27200P=20000r=0.062
Given values
27200=
27200=
\,\,20000(1+0.062)^{t}
20000(1+0.062)
t
Plug in values
27200=
27200=
\,\,20000(1.062)^{t}
20000(1.062)
t
Add
\frac{27200}{20000}=
20000
27200
=
\,\,\frac{20000(1.062)^{t}}{20000}
20000
20000(1.062)
t
Divide by 20000
1.36=
1.36=
\,\,1.062^t
1.062
t
\log\left(1.36\right)=
log(1.36)=
\,\,\log\left(1.062^t\right)
log(1.062
t
)
Take the log of both sides
\log\left(1.36\right)=
log(1.36)=
\,\,t\log\left(1.062\right)
tlog(1.062)
Bring exponent to the front
\frac{\log\left(1.36\right)}{\log\left(1.062\right)}=
log(1.062)
log(1.36)
=
\,\,\frac{t\log\left(1.062\right)}{\log\left(1.062\right)}
log(1.062)
tlog(1.062)
Divide both sides by log(1.062)
5.1116317=
5.1116317=
\,\,t
t
Use calculator
t\approx
t≈
\,\,5.1
5.1
If Rachel saves 3 dollars each day for 570 days, the answer is found by multiplying 3 x 570. = 1710