1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Debora [2.8K]
3 years ago
13

PLEASE HELP ASAP) Find the area of this parallelogram

Mathematics
1 answer:
Maurinko [17]3 years ago
6 0
Area = base * altitude = 2 * 2.9 = 5.8 cm^2
You might be interested in
Identify the initial amount a and the decay factor b in the exponential function. y equals 5 times 0.5 superscript x
Ber [7]
\bf \qquad \textit{Amount for Exponential Decay}
\\\\
A=a(b)^x\qquad 
\begin{cases}
A=\textit{accumulated amount}\\
a=\textit{initial amount}\\
b=\textit{decay factor}\\
x=\textit{elapsed time}\\
\end{cases}
\\\\\\
y=\stackrel{a}{5}(\stackrel{b}{0.5})^x
7 0
3 years ago
PROBLEM 1: Looking at different combinations of letters we can decide certain facts. Decide how many different "words" can be fo
UkoKoshka [18]

Answer:

The words from parsley are PAR, YES, RAP, PAY,and SLAP

The words from pepper are PEEP and that is it

Step-by-step explanation:

5 0
3 years ago
A- CE=CD <br> B- CE = CA <br> C- BF=DF <br> D- DF=EF<br><br> please help!!
Oksana_A [137]

The perpendicular bisector theorem gives the statements that ensures

that \overleftrightarrow{FG} and \overleftrightarrow{AB} are perpendicular.

The two statements if true that guarantee  \overleftrightarrow{FG} is perpendicular to line \overleftrightarrow{AB} are;

  • \overline{CE} = \overline{CD}
  • \overline{DF} = \overline{EF}

Reasons:

The given diagram is the construction of the line \mathbf{\overleftrightarrow{FG}} perpendicular to line \mathbf{\overleftrightarrow{AB}}.

Required:

The two statements that guarantee that  \overleftrightarrow{FG} is perpendicular to line \overleftrightarrow{AB}.

Solution:

From the point <em>C</em> arcs <em>E</em> and <em>D</em> are drawn to cross line \overleftrightarrow{AB}, therefore;

\overline{CE} = \mathbf{\overline{CD}} arcs drawn from the same radius.

\overleftrightarrow{FG} is perpendicular to line \overleftrightarrow{AB}, given.

Therefore;

\overline{DF} = \overline{EF}  by perpendicular bisector theorem.

Learn more about the perpendicular bisector theorem here:

brainly.com/question/11357763

7 0
3 years ago
What is the total number of servings the modified recipe will make?
Digiron [165]

9514 1404 393

Answer:

  B.  4

Step-by-step explanation:

Equating exponents, we have ...

  2x +7 = 15

  2x = 8 . . . . . subtract 7

  x = 4 . . . . . . divide by 2

The equation is true when the value of x is 4.

5 0
3 years ago
Read 2 more answers
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Other questions:
  • A data set consists of the following pairs of data: (3,5), (5,8), (6,13) Will the correlation coefficient for these data points
    5·1 answer
  • Find the coordinates of the point P that divides the directed line segment from A to B in the given ratio.
    14·1 answer
  • A diagonal of a cube goes from one of rhe cube's top corners to the opposite corner of the base of the cube. Find the length of
    15·1 answer
  • Answer the questions below (20 Points)
    6·2 answers
  • A store opens at 8am. From 8 until 10 customers arrive at a Poisson rate of four an hour. Between 10 and 12, they arrive at a Po
    7·1 answer
  • What is the solution to the system of equations? ⎧⎩⎨⎪⎪x+3y−z=24x+2y+5z=13x+z=12 (−4, 1, −3) (3, 0, 3) (5, −2, −3) (−1, 2, 3)
    13·1 answer
  • Two sides of a triangle measure 8 cm and 15 cm. Which could be the length of the third side?
    14·2 answers
  • 1. The line of best fit for the data in the table below is y = 3.3x + 1.3 Use this model to find the value of y when x = 15.
    6·1 answer
  • Help with this please.
    9·1 answer
  • Sean received both the 5th highest and the 5th lowest mark in the class. How many students are there in the class?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!