6a-2 (a-1) in simplest form is 4a+2.
Answer:
Step-by-step explanation:
A 2nd order polynomial such as this one will have 2 roots; a 3rd order polynomial 3 roots, and so on.
The quadratic formula is one of the faster ways (in this situation, at least) in which to find the roots. From 2x^2 + 4x + 7 we get a = 2, b = 4 and c = 7.
Then the discriminant is b^2 - 4ac, or, here, 4^2 - 4(2)(7), or -40. Because the discriminant is negative, we know that the roots will be complex and unequal.
Using the quadratic formula:
-4 ±√[-40] -4 ± 2i√10
x = ------------------ = ------------------
4 4
-2 ± i√10
Thus, the roots are x = ------------------
2
Answer:
The Zscore for both test is the same
Step-by-step explanation:
Given that :
TEST 1:
score (x) = 75
Mean (m) = 65
Standard deviation (s) = 8
TEST 2:
score (x) = 75
Mean (m) = 70
Standard deviation (s) = 4
USING the relation to obtain the standardized score :
Zscore = (x - m) / s
TEST 1:
Zscore = (75 - 65) / 8
Zscore = 10/8
Zscore = 1.25
TEST 2:
Zscore = (75 - 70) / 4
Zscore = 5/4
Zscore = 1.25
The standardized score for both test is the same.
See the attached figure to better understand the problem
let
L-----> length side of the cuboid
W----> width side of the cuboid
H----> height of the cuboid
we know that
One edge of the cuboid has length 2 cm-----> <span>I'll assume it's L
so
L=2 cm
[volume of a cuboid]=L*W*H-----> 2*W*H
40=2*W*H------> 20=W*H-------> H=20/W------> equation 1
[surface area of a cuboid]=2*[L*W+L*H+W*H]----->2*[2*W+2*H+W*H]
100=</span>2*[2*W+2*H+W*H]---> 50=2*W+2*H+W*H-----> equation 2
substitute 1 in 2
50=2*W+2*[20/W]+W*[20/W]----> 50=2w+(40/W)+20
multiply by W all expresion
50W=2W²+40+20W------> 2W²-30W+40=0
using a graph tool------> to resolve the second order equation
see the attached figure
the solutions are
13.52 cm x 1.48 cm
so the dimensions of the cuboid are
2 cm x 13.52 cm x 1.48 cm
or
2 cm x 1.48 cm x 13.52 cm
<span>Find the length of a diagonal of the cuboid
</span>diagonal=√[(W²+L²+H²)]------> √[(1.48²+2²+13.52²)]-----> 13.75 cm
the answer is the length of a diagonal of the cuboid is 13.75 cm