Answer:
The initial volume in mL is 5959.2 mL
Explanation:
As the number of moles of a gas increases, the volume also increases. Hence, number of moles and volumes are directly proportional i.e
n ∝ V
Where n is the number of moles and V is the volume
Then, n = cV
c is the proportionality constant
∴n/V = c
Hence n₁/V₁ = n₂/V₂
Where n₁ is the initial number of moles
V₁ is the initial volume
n₂ is the final number of moles
and V₂ is the final volume.
From the question,
n₁ = 0.693 moles
V₁ = ?
n₂ = 0.928 moles
V₂ = 7.98 L
Putting the values into the equation
n₁/V₁ = n₂/V₂
0.693 / V₁ = 0.928 / 7.98
Cross multiply
∴ 0.928V₁ = 0.693 × 7.98
0.928V₁ = 5.53014
V₁ = 5.53014/0.928
V₁ = 5.9592 L
To convert to mL, multiply by 1000
∴ V₁ = 5.9592 × 1000 mL
V₁ = 5959.2 mL
Hence, the initial volume in mL is 5959.2 mL
Explanation:
<h2>The number of energy levels (n) increases, so there is a greater distance between the nucleus and the outermost orbital.</h2>
Answer:f has 14 electrons in 7 sublevel orbitals,d has 10 electrons in 5 sublevel orbitals,p has 6 electrons in 3 sublevel orbitals,s has 2 electrons in 1 sublevel orbital.
Explanation:
Answer:
mass HF = 150.05 g
Explanation:
- SiO2(s) + 4HF(g) → SiF4(g) + 2H2O(l)
⇒ Q = (ΔH°rxn * mHF) / (mol HF * MwHF )
∴ MwHF = 20.0063 g/mol
∴ mol HF = 4 mol
∴ ΔH°rxn = - 184 KJ
∴ Q = 345 KJ
mass HF ( mHF ):
⇒ mHF = ( Q * mol HF * MwHF ) / ΔH°rxn
⇒ mHF = ( 345 KJ * 4mol HF * 20.0063 g/mol ) / 184 KJ
⇒ mHF = 150.05 g HF