Answer:
3.3m/s
Explanation:
You first get the total time (80 + 70 = 150s).
Then you would find the displacement of the truck. To do that you would do component method (vector addition), so since its a right triangle (North and East), displacement is 400^2 + 300^2 = d^2.
d= 500m.
So now that you have displacement and time, you can find the velocity:
v=d/t
v=500/150
v=3.3
A jet fighter flies from the airbase A 300 km East to the point M. Then 350 km at 30° West of North.
It means : at 60° North of West. So the distance from the final point to the line AM is :
350 · cos 60° = 350 · 0.866 = 303.1 km
Let`s assume that there is a line N on AM.
AN = 125 km and NM = 175 km.
And finally jet fighter flies 150 km North to arrive at airbase B.
NB = 303.1 + 150 = 453.1 km
Then we can use the Pythagorean theorem.
d ( AB ) = √(453.1² + 125²) = √(205,299.61 + 15,625) = 470 km
Also foe a direction: cos α = 125 / 470 = 0.266
α = cos^(-1) 0.266 = 74.6°
90° - 74.6° = 15.4°
Answer: The distance between the airbase A and B is 470 km.
Direction is : 15.4° East from the North.
Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
Answer:
i know the first one.
Explanation:
the distance from earth in light years is 6 trillion miles.