Explanation:
Below is an attachment containing the solution.
The earth obviously because it is on Earth like we are and it has the same gravital properties. It falls when you drop it and rises when you pick it up
The initial momentum of the system can be expressed as,

The final momentum of the system can be given as,

According to conservation of momentum,

Plug in the known expressions,

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,

Thus, the final velocity of second mass is 2.99 m/s.
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:

This number has 3 sig figs.