The boiling point of water is 100°C. So at 101°C, the water is steam. Compute the specific heat first from 101 to 100.
E = mCΔT, where c for steam is 1.996 kJ/kg·°C
E₁ = (0.65 kg)(1.996 kJ/kg·°C)(101 - 100°C) = 1.2974 kJ
Next, let's solve the latent heat when steam turns to liquid. The heat of vaporization of water is 2260 kJ/kg.
E₂ = mHvap = (0.65 kg)(2260 kJ/kg) = 1469 kJ
Lastly, let's solve the energy to bring down the temperature to 51°C. The specific heat of liquid water is 4.187 kJ/kg·°C.
E₃ = (0.65 kg)(4.187 kJ/kg·°C)(100 - 51°C) = 139.36 kJ
Thus,
<em>Total energy = 1.2974 kJ+1469 kJ+139.36 kJ = 1,609.66 kJ</em>
Result of the other variable
Citric Acid is the correct answer because it contains a density of 1.66 g/cm3, whereas water= 1.00 g/cm3, Olive oil= 0.93 g/cm3, Ethyl alcohol= 0.79 g/cm3
Answer:
d. intrusion
Explanation:
An intrusion is molten rock from the Earth's interior that squeezes into existing rock and cools. Folding Folding occurs when rock layers bend and buckle from Earth's internal forces.
Answer: A Answers. Assuming that the terminal velocity doesn't change during the fall, then the kinetic energy would remain constant. However the terminal velocity decreases during the fall since the air becomes denser at lower altitudes.
Explanation:
What happens to the KE of an object when it slows down and heats up? - Quora. The kinetic energy goes down and the loss of the kinetic energy is through the production of heat energy. In real world this is due to friction, or an opposing force that decelerates the object, or a combination of both.