Answer:
Molar solubility is 1.12x10⁻⁴M
Explanation:
The dissolution of magnesium hydroxide is:
Mg(OH)₂(s) ⇄ Mg²⁺ + 2OH⁻
The molar solubility represents the moles of the solid that the solution can dissolve, that could be written as:
Mg(OH)₂(s) ⇄ X + 2X
<em>Where X is solubility.</em>
<em />
If you obtained a [OH⁻] = 2.24x10⁻⁴M and you know [OH⁻] = 2X:
2X = 2.24x10⁻⁴M
X = 2.24x10⁻⁴M/2
X =1.12x10⁻⁴M
<h3>Molar solubility is 1.12x10⁻⁴M</h3>
Assuming ideal behavior of the gas for a fixed amount when temperature is held constant, the pressure and volume are inversely proportional as given by the expression
P1V1 = P2V2
where the terms with subscripts of one represent the initial conditions for pressure and volume of the gas while for terms with subscripts of two represent the final conditions.
Rearranging the Boyle's law equation to calculate for the final volume V2:
V2 = P1V1 / P2
V2 = (99.7 kPa)(150 mL) / 99.8 kPa
V2 = 149.85 mL
Answer:
Mass in an isolated system can neither be destroyed nor created.
Explanation:
Answer:
The balanced chemical reaction is expressed as:
HCl + NaOH ---> NaCl + H2O
We are given the amount and the concentration of the sodium hydroxide reactant. This will be the starting point for the calculations.
0.100 mol NaOH/L solution (0.06 L solution) ( 1 mol HCl / 1 mol NaOH) = 0.006 mol HCl
Molarity = amount in moles / Volume of solution = 0.006 mol HCl/ 0.150 L
Molarity = 0.04 M
Explanation:
Answer:
The steps are arranged in the following order, describing how carbon dioxide and photons impact the earth's warming.
Explanation:
The sequence is in the following order;
- The sun radiated sunlight (visible) photons
- Photons from the sun strike the earth and become infrared photons
- Earth radiates infrared photons into the atmosphere
- CO2 in the atmosphere absorb infrared photons
- CO2 in the atmosphere emit infrared photons back towards earth
Carbon dioxide (CO2) molecules can absorb energy from infrared (IR) radiation. Due to vibrations caused by this absorption, the CO2 molecules later release extra energy by emitting another infrared photon.
This ability of CO2 molecules to absorb and re-emit infrared energy is what makes it an effective heat-trapping greenhouse gas.