Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.
Answer:
Red phosphorous can vary in colour from orange to purple, due to slight variations in its chemical structure. The third form, black phosphorous, is made under high pressure, looks like graphite and, like graphite, has the ability to conduct electricity.
Explanation:
Answer:
less than
Explanation:
The absorbance of a solution is a function of the concentration (amount) of a substance in the solution. Mathematically, if the concentration is increased, the absorbance of the solution will also increase and if the concentration is decreased, the absorbance will decrease. There will be a decrease in the value of the absorbance because the calculated and predicted masses are not the same.