Answer:
The molar mass of H₂O₂ (the solute) in the aqueous solution of
H₂O₂ is 51 g
Explanation:
Given;
H₂O₂ compound
Concentration of aqueous solution of H₂O₂ = 1.5M
The molecular mass of H₂O₂ = (1 x 2) + (16 x 2) = 34 g/mol

Reacting mass (g) = Concentration x Molar mass
Reacting mass (g) = 1.5 x 34
Reacting mass (g) = 51 g
Therefore, the molar mass of H₂O₂ (the solute) in the aqueous solution of
H₂O₂ is 51 g
Boron
You start at He and work you way down
The answer is c because the subject thinks that they will be shocked when then might not
Explanation:
if it was meant for [Ar]4s²3d¹ :
1s²2s²2p⁶3s²3p⁶4s²3d¹
number of e‐ : 21
atomic number is 21.. element is scandium
ion: Sc³+
Explanation:
Lithium, sodium and potassium are all group 1A elements and when we move down a group then there occurs an increase in atomic size of the elements. As lithium is the smallest and potassium being the largest so, when each of them will lose an electron and obtain a positive charge then size of lithium will further decrease.
Therefore, ions are ranked according to their increase in size as follows.
When an atom tends to gain electrons then it acquires a negative charge. This means that size of the atom increases.
So, more is the negative charge present on an atom more will be its atomic size. Therefore, correct order of increasing size for
is as follows.

Similarly, order of increasing size of
is as follows.
