Answer:
A
Step-by-step explanation:
You can add the numbers to get the perimeter
10 1/3 + 15 2/3 = 26
18 1/4 + 24 1/4= 42 1/2
26 + 42 1/2= 68 1/2
That is answer choice A
Answer:
80 questions
Step-by-step explanation:
- 35/100 = 28/x
- 35x = 28(100)
- 35x = 2800
- x = 2800/35
- x = 80
Given that the triangle is dilated by factor 3, the image will be found as follows;
The object is at:
A(-7,-3), B(-3,-2), C(-4,-5)
when the image was enlarged the new coordinates will be:
A'=3(-7,-3)=(-21,-9)
B'=3(-3,-2)=(-9,-6)
C'=3(-4,-5)=(-12,-15)
since the image is centered at the point (-7,-6), the final point will be at:
A"=[(-21+-7),(-9+-6)=(-28,-15)
B''=[(-9+-7),(-6+-6)]=(-16,-12)
C''=[(-12+-7),(-15+-6)]=(-19,-17)
thus the coordinates of the final image are:
A''(-28,-15),B''(-16,-12),C''(-19,-17)
Answer:
Total number of possible combinations are 6
Length width
23 dm 2m
21 dm 4 dm
19 dm 6 dm
17 dm 8 dm
15 dm 10 dm
13 dm 12 dm
Step-by-step explanation:
We are given that
Perimeter of rectangular garden=50 dm
Width is even number.
Length is always longer than or equal to width.
Let length of rectangular garden=x
Width of rectangular garden=y
We have to find the possible number of combinations .
Perimeter of rectangular garden=



If y=2 dm
x=25-2=23 dm
If y=4 dm
x=25-4=21 dm
If y=6 dm
x=25-6=19 dm
If y=8 dm
x=25-8=17 dm
If y=10 dm
x=25-10=15 dm
If y=12 dm
x=25-12=13 dm
If y=14 dm
x=25-14=11 dm
x<y
It is not possible
Then, possible combinations are 6
Length width
23 dm 2m
21 dm 4 dm
19 dm 6 dm
17 dm 8 dm
15 dm 10 dm
13 dm 12 dm
21,800,000 rounded to the nearest million = 22,000,000