1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
10

100 POINTS URGENT PLEASE HELP

Mathematics
2 answers:
Jobisdone [24]3 years ago
5 0

As the object is granola bars hence it may start from 0 and it ends at 300

Hence

Domain:-

\\ \sf{:}\dashrightarrow 0\leqslant x\leqslant 300

And

\\ \sf{:}\dashrightarrow 0.75(300)=225

Hence

Range:-

\\ \sf{:}\dashrightarrow 0\leqslant y\leqslant 225

Done

8090 [49]3 years ago
4 0

<u>Domain</u><u>~</u><u> </u>

0 \leqslant b \leqslant 300

<u>Range</u><u>~</u><u> </u>

<u>0 \leqslant p \leqslant 225</u>

<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>:</em><em>)</em>

You might be interested in
the line joining A(a, 3) to B(2 -3) is perpendicular to the line joining C(10,1) to B. The value of a is?
RideAnS [48]
Well, first off, let's find what is the slope of BC

\bf \begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%   (a,b)&#10;B&({{ 2}}\quad ,&{{ -3}})\quad &#10;%   (c,d)&#10;C&({{ 10}}\quad ,&{{ 1}})&#10;\end{array}&#10;\\\\\\&#10;% slope  = m&#10;slope = {{ m}}= \cfrac{rise}{run} \implies &#10;\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{1-(-3)}{10-2}\implies \cfrac{1+3}{10-2}&#10;\\\\\\&#10;\cfrac{4}{8}\implies \cfrac{1}{2}

now, a line perpendicular to that one, will have a negative reciprocal slope, thus

\bf \textit{perpendicular, negative-reciprocal slope for slope}\quad \cfrac{1}{2}\\\\&#10;slope=\cfrac{1}{{{ 2}}}\qquad negative\implies  -\cfrac{1}{{{ 2}}}\qquad reciprocal\implies - \cfrac{{{ 2}}}{1}\implies \boxed{-2}

now, we know the slope "m" of AB is -2 then, thus

\bf \begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%   (a,b)&#10;A&({{ a}}\quad ,&{{ 3}})\quad &#10;%   (c,d)&#10;B&({{ 2}}\quad ,&{{ -3}})&#10;\end{array}&#10;\\\\\\&#10;% slope  = m&#10;slope = {{ m}}= \cfrac{rise}{run} \implies &#10;\cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-3-3}{2-a}=\boxed{-2}&#10;\\\\\\&#10;\cfrac{-6}{2-a}=-2\implies -6=-4+2a\implies -2=2a\implies \cfrac{-2}{2}=a&#10;\\\\\\&#10;-1=a
6 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
The Australian Open is the first of the four Grand Slam professional tennis events held each year. Victoria Azarenka beat Maria
klasskru [66]

Answer:

asnwer is B

Step-by-step explanation:

mark BRAINLIEST

5 0
3 years ago
Consider the given density curve.
Gemiola [76]

Answer:

11 is best answer for it ....,..........

4 0
2 years ago
Michael gets test grades of 73, 77, 82, and 86. He gets a 93 on his final exam. Find the weighted mean if the tests each count f
leonid [27]

Answer:

84.9

Step-by-step explanation:

The weighted mean is given by the sum of the products of each grade by its respective weight. If the first four grades correspond to 15% of the final grade each, and the final exam is equivalent to 40% of the final grade, Michael's final grade is:

G= (73+77+82+86)*0.15+(93*0.4)\\G= 84.9

Michael's final weighted mean is 84.9.

3 0
3 years ago
Other questions:
  • A spool of ribbon holds 6.75 meters. A craft club buys 21 spools. What is the total cost if the ribbon sells for $2 per meter?
    10·2 answers
  • How can you use your knowledge of taxes and simple and compound interest to help you make informed decisions in real world
    7·1 answer
  • Please help me it’s really important
    7·1 answer
  • Match each expression to the correct verbal description.
    6·1 answer
  • Help plz help plz help plz help plz​
    6·2 answers
  • Please help me answer this question
    7·1 answer
  • In 16 years, Marissa will be five times older than she is today. How old is she?
    15·1 answer
  • WILL GIVE BRAINLIEST
    7·1 answer
  • If 600 students at the school took the SAT, how many scored in the 701 to 1000 range?
    8·1 answer
  • HELP HURRY PLS
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!