1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
2 years ago
6

What is specific gravity​

Physics
1 answer:
Mrac [35]2 years ago
7 0

Answer:

It is the ratio of the density of a substance to the density of a given reference material.

Explanation:

<em>Specific gravity is also known as relative density.</em>

<u>To find the relative density of substance, you:</u>

  • Divide the density of substance measured
  • And divide that by the density of the reference

You might be interested in
A block of ice(m = 14.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal for
nadezda [96]

Answer:

a) The weight and the normal force of the block has a magnitude of 137.298 newtons and the pull force exerted on the block has a magnitude of 98 newtons.

b) The final speed of the block of ice is 9.8 meters per second.

Explanation:

a) We need to calculate the weight, normal force from the ground to the block and the pull force. By 3rd Newton's Law we know that normal force is the reaction of the weight of the block of ice on a horizontal.

The weight of the block (W), measured in newtons, is:

W = m\cdot g (1)

Where:

m - Mass of the block of ice, measured in kilograms.

g  - Gravitational acceleration, measured in meters per square second.

If we know that m = 14\,kg and g = 9.807\,\frac{m}{s^{2}}, the magnitudes of the weight and normal force of the block of ice are, respectively:

N = W = (14\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

N = W = 137.298\,N

And the pull force is:

F_{pull} = 98\,N

The weight and the normal force of the block has a magnitude of 137.298 newtons and the pull force exerted on the block has a magnitude of 98 newtons.

b) Since the block of ice is on a frictionless surface and pull force is parallel to the direction of motion and uniform in time, we can apply the Impact Theorem, which states that:

m\cdot v_{o} +\Sigma F \cdot \Delta t = m\cdot v_{f} (2)

Where:

v_{o}, v_{f} - Initial and final speeds of the block, measured in meters per second.

\Sigma F - Horizontal net force, measured in newtons.

\Delta t - Impact time, measured in seconds.

Now we clear the final speed in (2):

v_{f} = v_{o}+\frac{\Sigma F\cdot \Delta t}{m}

If we know that v_{o} = 0\,\frac{m}{s}, m = 14\,kg, \Sigma F = 98\,N and \Delta t = 1.40\,s, then final speed of the ice block is:

v_{f} = 0\,\frac{m}{s}+\frac{(98\,N)\cdot (1.40\,s)}{14\,kg}

v_{f} = 9.8\,\frac{m}{s}

The final speed of the block of ice is 9.8 meters per second.

6 0
2 years ago
Does gravity affect your weight???
Degger [83]
Weight is a force caused by gravity. The weight of an object is the gravitational force between the object and the Earth. The more mass the object has the greater its weight will be.
5 0
3 years ago
Read 2 more answers
g You shine orange laser light that has a wavelength of 600 nm through a narrow slit. The slit forms a diffraction pattern on a
zimovet [89]

Answer:

 λ = 3 10⁻⁷ m,   UV laser

Explanation:

The diffraction phenomenon is described by the expression

         a sin θ = m λ

let's use trigonometry

         tan θ = y / L

as in this phenomenon the angles are small

        tan θ = \frac{sin \ \theta}{cos \ \theta} = sin θ

        sin θ = y / L

we substitute

      a y / L = m  λ

let's apply this equation to the initial data

       a  0.04 / L = 1 600 10⁻⁹

       a / L = 1.5 10⁻⁵

now they tell us that we change the laser and we have y = 0.04 m for m = 2

      a 0.04 / L = 2  λ

       a / L = 50  λ

we solve the two expression is

         1.5 10⁻⁵ = 50  λ

          λ = 1.5 10⁻⁵ / 50

          λ = 3 10⁻⁷ m

    UV laser

3 0
2 years ago
Yellow-green light has a wavelength of 560 nm. What is its frequency?
Natasha2012 [34]
5.4 x 1014Hz
wavelength x frequency = the speed of light
7 0
2 years ago
Read 2 more answers
A bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes.
zaharov [31]

Given that,

Frequency emitted by the bat, f = 47.6 kHz

The speed off sound in air, v = 413 m/s

We need to find the wavelength detected by the bat. The speed of a wave is given by formula as follows :

v=f\lambda\\\\\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{413}{47.6\times 10^3}\\\\\lambda=0.00867\ m

or

\lambda=8.67\ mm

So, the bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes i.e. 8.67 mm.

3 0
3 years ago
Other questions:
  • Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid ra
    10·1 answer
  • Please give me the answer of this​
    8·1 answer
  • Johannes Kepler, an apprentice of Brahe, believed in the heliocentric universe but rejected past astronomers' belief in
    12·2 answers
  • A 20-ton truck collides with a 1500-lb car and causes a lot of damage to the car. Since a lot of damage is done on the car : Sel
    10·1 answer
  • The distance from Earth of the red supergiant Betelgeuse is approximately 643 light-years. If it were to explode as a supernova,
    8·1 answer
  • A student places blocks on a 100cm long see-saw as shown/
    9·1 answer
  • What would earth be like without the moon?
    8·2 answers
  • A box is sliding along a frictionless surface and gets to a ramp. Disregarding friction, how fast should the box be going on the
    12·1 answer
  • How many significant digits are in the following measurements?<br> a. 1300 m
    7·1 answer
  • Have my equation written out but struggling to solve. Can someone help me solve!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!