Answer:
The answer to your question is when time = 50 s, work = 5000 J
when time = 90 s, work = 9000 J
Explanation:
Data
time = 50 s or 90 s
Power = 100 watts
Power is defined as the rate of work done per unit of time.
Power = Work / time
-Solve for Work
Work = Power x time
-Substitution
Work = 100 x 50
-Result
Work = 5000
2.-When time = 90 s
Work = 100 x 90
-Result
Work = 9000 watts
Answer:
ΔK = 24 joules.
Explanation:
Δ
Work done on the object
Work is equal to the dot product of force supplied and the displacement of the object.
* Δ
Δ
can be found by subtracting the vectors (7.0, -8.0) and (11.0, -5.0), which is written as Δ
= (11.0 - 7.0, -5.0 - -8.0) which equals (4.0, 3.0).
This gives us
*
=
=
J
Answer:
Temperature, T = 1542.10 K
Explanation:
It is given that,
The black body radiation emitted from a furnace peaks at a wavelength of, 
We need to find the temperature inside the furnace. The relationship between the temperature and the wavelength is given by Wein's law i.e.

or

b = Wein's displacement constant



T = 1542.10 K
So, the temperature inside the furnace is 1542.10 K. Hence, this is the required solution.
Chemical Potential Energy is released when chemical bonds between atoms are broken (like covalent and ionic) and is released mainly as thermal
<span>Elastic Potential is released when the molecules in the material are allowed to go back to there original form, and is released mainly as kinetic</span>