<h2>
Average speed of transit train is 60 mph</h2>
Explanation:
Average speed of passenger train = 45 mph
Time taken from station A to station B for passenger train = 10:00 - 6:00 = 4 hours
Distance between station A to station B = 45 x 4 = 180 miles.
Time taken from station A to station B for transit train = 4 - 1 = 3 hours
Distance between station A to station B = Average speed of transit train x Time taken from station A to station B for transit train
180 = Average speed of transit train x 3
Average speed of transit train = 60 mph
Average speed of transit train is 60 mph
The work done by the applied force on the block against the frictional force is 15.75 J.
<h3>
Work done by the applied force</h3>
The work done by the applied force is calculated as follows;
W = Fd
F - Ff = ma
where;
- F is applied force
- Ff is frictional force
Fcos(37) - μmgsin(37) = ma
Fcos(37) - (0.3)(4)(9.8)sin(37) = 4(0.2)
0.799F - 7.077 = 0.8
F = 9.86 N
W = Fdcosθ
W = 9.86 x 2 x cos(37)
W = 15.75 J
Thus, the work done by the applied force on the block against the frictional force is 15.75 J.
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Let say the point is inside the cylinder
then as per Gauss' law we have

here q = charge inside the gaussian surface.
Now if our point is inside the cylinder then we can say that gaussian surface has charge less than total charge.
we will calculate the charge first which is given as


now using the equation of Gauss law we will have


now we will have

Now if we have a situation that the point lies outside the cylinder
we will calculate the charge first which is given as it is now the total charge of the cylinder


now using the equation of Gauss law we will have


now we will have
It's difficult to measure that because it's hard to make sure it is only a uniform layer of gas in whatever you're measuring it in
When the grasshoppers vertical velocity is exactly zero.
v = -g•t + v0.
v: vertical part of velocity. Is zero at maximum height.
g: 9.81
t: time you are looking for
v0: initial vertical velocity
Find the vertical part of the initial velocity, by using the angle at which the grasshopper jumps.