There would be 55.8 g present
Answer:
Neutrons.
Explanation:
Isotopes can be defined as the atom of an element that has the same number of protons but different number of neutrons. This ultimately implies that, the isotopes of an element have the same atomic number (number of protons) but different atomic mass (number of nucleons).
The isotope of an element is denoted by
Where; X is the symbol of the element.
A is the atomic mass or number of nucleons.
Z is the atomic number or number of protons.
<em>Therefore, the number of neutrons = A - Z</em>
<em>Isotopes of carbon differ with respect to the number of neutrons.</em>
<em>Basically, there are three (3) Isotopes of Carbon and these are;</em>
<em>1. Carbon-12: it has an atomic mass of 12 with 6 numbers of proton and neutron respectively. </em>
<em>2. Carbon-13: it has an atomic mass of 13 with 6 numbers of proton and 7 numbers of neutron. </em>
<em>3. Carbon-14: it has an atomic mass of 14 with 6 numbers of proton and 8 numbers of neutron. </em>
Answer:
0.07 g/s.
Explanation:
From the question given above, the following data were obtained:
Mass lost = 9.85 g
Time taken = 2 min 30 s
Mean rate =?
Next, we shall convert 2 min 30 s to seconds (s). This can be obtained as follow:
1 min = 60 s
Thus,
2 min = 2 × 60 = 120 s
Therefore,
2 min 30 s = 120 s + 30 s = 150 s
Finally, we shall determine the mean rate of the reaction. This can be obtained as illustrated below:
Mass lost = 9.85 g
Time taken = 150 s
Mean rate =?
Mean rate = mass lost / time taken
Mean rate = 9.85 / 150
Mean rate = 0.07 g/s
Therefore, the mean rate of the reaction is 0.07 g/s