Answer:
V₂ =279.9 cm³
Explanation:
Given data:
Initial volume = 360 cm³
Initial temperature = 50°C
Initial pressure = 700 mmHg
Final volume = ?
Final temperature = 273 k
Final pressure = 1 atm
Solution:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Solution:
<em>We will convert the mmHg to atm.</em>
700/760 = 0.92 atm
<em>and °C to kelvin.</em>
50+273 = 323 K
P₁V₁/T₁ = P₂V₂/T₂
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 0.92 atm × 360 cm³ × 273 K / 323 K ×1 atm
V₂ = 290417.6 atm .cm³. K / 323 k. atm
V₂ =279.9 cm³
<u>Answer:</u> The final volume of the oxygen gas is 4.04 L
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final volume of the oxygen gas is 4.04 L
Answer:
Its a natural resource used around the world