Let us consider two bodies having masses m and m' respectively.
Let they are separated by a distance of r from each other.
As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -
where G is the gravitational force constant.
From the above we see that F ∝ mm' and 
Let the orbital radius of planet A is
= r and mass of planet is
.
Let the mass of central star is m .
Hence the gravitational force for planet A is 
For planet B the orbital radius
and mass
Hence the gravitational force 
![f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }](https://tex.z-dn.net/?f=f_%7B2%7D%20%3DG%5Cfrac%7Bm%2A3m_%7B1%7D%20%7D%7B%5B2r_%7B1%7D%5D%20%5E%7B2%7D%20%7D)

Hence the ratio is 
[ ans]
given that snow is projected at an angle of 40 degree
It range is given as a = 19 ft

now we can use the formula of horizontal range





<u>so its initial speed must be 7.6 m/s</u>
<h2>
Answer: 13.61 N/m</h2>
Hooke's law establishes that the elongation of a spring is directly proportional to the modulus of the force
applied to it, <u>as long as the spring is not permanently deformed</u>:
(1)
Where:
is the elastic constant of the spring. The higher its value, the more work it will cost to stretch the spring.
is the length of the spring without applying force.
is the length of the spring with the force applied.
According to this, we have a spring where only the force due gravity is applied.
In other words, the force applied is the weigth
of the block:
(2)
Where
is the mass of the block and
is the gravity acceleration.
(3)
(4)
Knowing the force applied
and
and
, we can substitute the values in equation (1) and find
:
(5)
(6)
<u>Finally:</u>
The ball should put 200 N of force towards the golfer.
Newton's Third Law is every action has an equal and opposite reaction.
It's the ball exerting 200 N of force towards the club as well, but the opposite reaction is that it flies away.
Answer:
First of all, “moist air” is air with a high water vapor content. Water vapor, the invisible, gaseous form of water, occurs in highly variable amounts in the atmosphere. Water is composed of a hydrogen atom and two oxygen atoms (H2O) and has a molecular weight of 18 grams per mole.