Answer:the resistance decrease
Explanation:
Answer:
Explanation:
Electric field due to a point charge Q at a point at distance d is given by the relation
E = 
Since Q1 and Q2 are of the same magnitude and distance , so they will create eletric field of same magnitude. Similarly field due to rest of the charges will also be same.
The charges are situated on the corners of a square in such a way that
equal charges of Q1 and Q3 are situated on the diametrically opposite corners of the square. Fields due to these two charges will be equal and opposite in direction. Therefore net field due to these two charges will be zero.
On the same ground, we can say that field due to Q2 and Q4 at the centre will be equal and opposite and therefore they will cancel out each other. Net field at the centre will be zero
Overall, net field due to all the four charges will be zero
It would be "Researchers found environmental safe replacements for CFC's"
Answer:
Infinite Distance
Explanation:
The electric potential due to a point charge can be expressed by the following equation:

Here,
V is the electric potential due to the point charge
k is the proportionality constant
Q is the magnitude of the point charge
r is the distance from the charge
As the value of r increases, the value of V decreases since there is an inverse relation between the two. The value of V can be absolutely 0 when the distance from the charge is infinite i.e. r is infinite. Mathematically, dividing a number by infinity results in zero. Also theoretically speaking, at infinite distance the electric field lines won't approach and hence the electric potential would be zero.
Answer:
the correct one is 2. the equipotential lines must be closer together where the field has more intensity
Explanation:
The equipotential line concept is a line or surface where a test charge can move without doing work, therefore the potential in this line is constant and they are perpendicular to the electric field lines.
In this exercise we have a charge and a series of equipotential lines, if this is a point charge the lines are circles around the charge, where the potential is given by
V = k q / r
also the electric field and the electuary potential are related
E =
therefore the equipotential lines must be closer together where the field has more intensity
When checking the answers, the correct one is 2