Ndndnfjcjdjdjdbdndjnznznsns
Answer:
Option (a)
Explanation:
We will discard options that don't fit the situation:
Option b: <em>Incorrect </em>since if the driver "hits the gas" then velocity is augmenting and it's not constant.
Option c and d: <em>Incorrect </em>since the situation doesn't give us any information that could be related directly to the terrain or movement direction.
Option a: Correct. At <em>stage 1</em> we can assume the driver was going at constant speed which means acceleration is constantly zero. At <em>stage 2 </em>we can assume the driver augmented speed linearly, this is, with constant positive acceleration. At <em>stage 3 </em>we can assume the driver slowed the speed linearly, with constant negative acceleration.
Answer:
The power of the distance is -1.
Explanation:
The equation for the electric potential of a point charge is given by 
where V is the electric potential, k is Coulomb's constant (it has a value of
with units
), q is the electric charge of the small charge and r is the distance from the charge.
Now, the power of a number is how many times we multiply that number by itself; we see r appears only once in the equation. So we know the power is 1. But we can see in the equation that k and q are divided by r, which means r is the denominator. This means the power of r is negative (-).
Therefore, the power of r is -1.