Answer:
(a) a = - 201.8 m/s²
(b) s = 197.77 m
Explanation:
(a)
The acceleration can be found by using 1st equation of motion:
Vf = Vi + at
a = (Vf - Vi)/t
where,
a = acceleration = ?
Vf = Final Velocity = 0 m/s (Since it is finally brought to rest)
Vi = Initial Velocity = (632 mi/h)(1609.34 m/ 1 mi)(1 h/ 3600 s) = 282.53 m/s
t = time = 1.4 s
Therefore,
a = (0 m/s - 282.53 m/s)/1.4 s
<u>a = - 201.8 m/s²</u>
<u></u>
(b)
For the distance traveled, we can use 2nd equation of motion:
s = Vi t + (0.5)at²
where,
s = distance traveled = ?
Therefore,
s = (282.53 m/s)(1.4 s) + (0.5)(- 201.8 m/s²)(1.4 s)²
s = 395.54 m - 197.77 m
<u>s = 197.77 m</u>
Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

where u is the initial speed and
. The horizontal distance travelled by the salmon is

where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is

where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation

and we can solve this formula for u, the initial speed of the salmon:

Answer:
Its either A. Or C cause ive had a question like this before So Im sure But if not Then Im so sorry