Answer:
B. w=12.68rad/s
C. α=3.52rad/s^2
Explanation:
B)
We can solve this problem by taking into account that (as in the uniformly accelerated motion)
( 1 )
where w0 is the initial angular speed, α is the angular acceleration, s is the arc length and r is the radius.
In this case s=3.7m, r=16.2cm=0.162m, t=3.6s and w0=0. Hence, by using the equations (1) we have


to calculate the angular speed w we can use
Thus, wf=12.68rad/s
C) We can use our result in B)

I hope this is useful for you
regards
Answer:

this force is
times more than the gravitational force
Explanation:
Kinetic Energy of the electron is given as


now the speed of electron is given as

now we have


now the maximum force due to magnetic field is given as



Now if this force is compared by the gravitational force on the electron then it is


so this force is
times more than the gravitational force
The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.
-- Speeding up . . .
the back of the seat
friction between the car seat and the seat of your pants
-- Slowing down . . .
the seat belt
friction between the car seat and the seat of your pants
-- Turning away from a straight line . . .
the seat belt
friction between the car seat and the seat of your pants
the door, or whatever or whomever you're leaning against
<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s?
</span>
Carbon is the answer. IF oxygen were on the list it would also be correct but for this its Carbon<span />