So you should label the x axis and y axis like I did then you use the formula!
Using the dot product:
For any vector x, we have
||x|| = √(x • x)
This means that
||w|| = √(w • w)
… = √((u + z) • (u + z))
… = √((u • u) + (u • z) + (z • u) + (z • z))
… = √(||u||² + 2 (u • z) + ||z||²)
We have
u = ⟨2, 12⟩ ⇒ ||u|| = √(2² + 12²) = 2√37
z = ⟨-7, 5⟩ ⇒ ||z|| = √((-7)² + 5²) = √74
u • z = ⟨2, 12⟩ • ⟨-7, 5⟩ = -14 + 60 = 46
and so
||w|| = √((2√37)² + 2•46 + (√74)²)
… = √(4•37 + 2•46 + 74)
… = √314 ≈ 17.720
Alternatively, without mentioning the dot product,
w = u + z = ⟨2, 12⟩ + ⟨-7, 5⟩ = ⟨-5, 17⟩
and so
||w|| = √((-5)² + 17²) = √314 ≈ 17.720
Answer:
1/6
Step-by-step explanation:
The angles of a quadrilateral add to 360, so we can solve for x by adding the 4 angle measures together and setting it equal to 360:
90 + 140 + (x - 10) + (x - 20) = 360
Combine like terms:
230 + 2x - 30 = 360
200 + 2x = 360
200 - (200) + 2x = 360 - (200)
2x = 160
Divide both sides by 2:
2x/(2) = 160/(2)
x = 80